Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Classification of the high-rank syntaxa of the Central and Eastern Balkan dry grasslands with a new hierarchical expert system approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00137918" target="_blank" >RIV/00216224:14310/24:00137918 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/full/10.1111/avsc.12779" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1111/avsc.12779</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/avsc.12779" target="_blank" >10.1111/avsc.12779</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Classification of the high-rank syntaxa of the Central and Eastern Balkan dry grasslands with a new hierarchical expert system approach

  • Popis výsledku v původním jazyce

    Aims: Developing a hierarchical classification system for classes, orders and alliances of the diverse dry grasslands of the Central and Eastern Balkan Peninsula and translating this into an electronic expert system (ES) for the automatic assignment of plots. LocationSerbia, Kosovo, North Macedonia, Bulgaria and northern Greece. Methods: We extracted 5734 plots from the Balkan Dry Grassland Database corresponding to eight classes of dry grasslands reported from the region, using the EuroVegChecklist ES. This data set and later the plots within each derived subunit were subjected to a new numerical approach: starting with an initial partitioning (expert-interpreted TWINSPAN classification), diagnostic species were determined based on their phi-values for the target vegetation type and the differences in phi-values to the next similar types. These diagnostic species were fed into an ES to create a new partitioning, a procedure which was iterated until diagnostic species and species of the ES converged. Then the same approach was applied within each of the derived units to define the units of the next-lower level. Results: The iterative cluster optimisation (ICO) converged in all cases. The resulting hierarchical expert system (HES) classified 95% of all plots to alliances. We distinguished four classes with eight orders and 12 alliances: (1) Tuberarietea guttatae (Romuleion); (2) Stipo-Brachypodietea distachyi (Clinopodio alpini-Thymion striati); (3) Festuco-Brometea with Brachypodietalia pinnati (Chrysopogono-Danthonion calycinae and Cirsio-Brachypodion pinnati), Festucetalia valesiacae (Festucion valesiacae), an unnamed order of rocky steppes (with Pimpinello-Thymion zygioidis) and Koelerietalia splendentis (Centaureo-Bromion fibrosi, Saturejion montanae and Diantho haematocalycis-Festucion hirtovaginatae); (four) Koelerio-Corynephoretea with Sedo acris-Festucetalia (Festucion vaginatae) and Trifolio arvensis-Festucetalia ovinae (Armerio rumelicae-Potentillion and Minuartio montanae-Poion molinerii all. nov.). Conclusion: sWe created a unified hierarchical classification with an electronic ES using diagnostic species defined by phi-values. Our new approach (ICO-HES: iterative cluster optimisation for hierarchical expert systems) allows dividing large data sets into meaningful units at several hierarchical levels, and thus has high potential for complex classifications. Importantly, it overcomes the divide between ES species and diagnostic species and re-unites them into one concept.

  • Název v anglickém jazyce

    Classification of the high-rank syntaxa of the Central and Eastern Balkan dry grasslands with a new hierarchical expert system approach

  • Popis výsledku anglicky

    Aims: Developing a hierarchical classification system for classes, orders and alliances of the diverse dry grasslands of the Central and Eastern Balkan Peninsula and translating this into an electronic expert system (ES) for the automatic assignment of plots. LocationSerbia, Kosovo, North Macedonia, Bulgaria and northern Greece. Methods: We extracted 5734 plots from the Balkan Dry Grassland Database corresponding to eight classes of dry grasslands reported from the region, using the EuroVegChecklist ES. This data set and later the plots within each derived subunit were subjected to a new numerical approach: starting with an initial partitioning (expert-interpreted TWINSPAN classification), diagnostic species were determined based on their phi-values for the target vegetation type and the differences in phi-values to the next similar types. These diagnostic species were fed into an ES to create a new partitioning, a procedure which was iterated until diagnostic species and species of the ES converged. Then the same approach was applied within each of the derived units to define the units of the next-lower level. Results: The iterative cluster optimisation (ICO) converged in all cases. The resulting hierarchical expert system (HES) classified 95% of all plots to alliances. We distinguished four classes with eight orders and 12 alliances: (1) Tuberarietea guttatae (Romuleion); (2) Stipo-Brachypodietea distachyi (Clinopodio alpini-Thymion striati); (3) Festuco-Brometea with Brachypodietalia pinnati (Chrysopogono-Danthonion calycinae and Cirsio-Brachypodion pinnati), Festucetalia valesiacae (Festucion valesiacae), an unnamed order of rocky steppes (with Pimpinello-Thymion zygioidis) and Koelerietalia splendentis (Centaureo-Bromion fibrosi, Saturejion montanae and Diantho haematocalycis-Festucion hirtovaginatae); (four) Koelerio-Corynephoretea with Sedo acris-Festucetalia (Festucion vaginatae) and Trifolio arvensis-Festucetalia ovinae (Armerio rumelicae-Potentillion and Minuartio montanae-Poion molinerii all. nov.). Conclusion: sWe created a unified hierarchical classification with an electronic ES using diagnostic species defined by phi-values. Our new approach (ICO-HES: iterative cluster optimisation for hierarchical expert systems) allows dividing large data sets into meaningful units at several hierarchical levels, and thus has high potential for complex classifications. Importantly, it overcomes the divide between ES species and diagnostic species and re-unites them into one concept.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10611 - Plant sciences, botany

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Vegetation Science

  • ISSN

    1402-2001

  • e-ISSN

    1654-109X

  • Svazek periodika

    27

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    29

  • Strana od-do

    1-29

  • Kód UT WoS článku

    001229182100001

  • EID výsledku v databázi Scopus

    2-s2.0-85195106759