Poynting flux transport channels formed in polar cap regions of neutron star magnetospheres
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00138323" target="_blank" >RIV/00216224:14310/24:00138323 - isvavai.cz</a>
Výsledek na webu
<a href="https://ui.adsabs.harvard.edu/abs/2024A%26A...691A.137B/abstract" target="_blank" >https://ui.adsabs.harvard.edu/abs/2024A%26A...691A.137B/abstract</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/0004-6361/202450949" target="_blank" >10.1051/0004-6361/202450949</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Poynting flux transport channels formed in polar cap regions of neutron star magnetospheres
Popis výsledku v původním jazyce
Context. Pair cascades in polar cap regions of neutron stars are considered to be an essential process in various models of coherent radio emissions of pulsars. The cascades produce pair plasma bunch discharges in quasi-periodic spark events. The cascade properties, and therefore also the coherent radiation, depend strongly on the magnetospheric plasma properties and vary significantly across and along the polar cap. Importantly, where the radio emission emanates from in the polar cap region is still uncertain. Aims. We investigate the generation of electromagnetic waves by pair cascades and their propagation in the polar cap for three representative inclination angles of a magnetic dipole, 0°, 45°, and 90°. Methods. We use two-dimensional particle-in-cell simulations that include quantum-electrodynamic pair cascades in a charge-limited flow from the star surface. Results. We find that the discharge properties are strongly dependent on the magnetospheric current profile in the polar cap and that transport channels for high intensity Poynting flux are formed along magnetic field lines where the magnetospheric currents approach zero and where the plasma cannot carry the magnetospheric currents. There, the parallel Poynting flux component is efficiently transported away from the star and may eventually escape the magnetosphere as coherent radio waves. The Poynting flux decreases with increasing distance from the star in regions of high magnetospheric currents. Conclusions. Our model shows that no process of energy conversion from particles to waves is necessary for the coherent radio wave emission. Moreover, the pulsar radio beam does not have a cone structure; rather, the radiation generated by the oscillating electric gap fields directly escapes along open magnetic field lines in which no pair creation occurs.
Název v anglickém jazyce
Poynting flux transport channels formed in polar cap regions of neutron star magnetospheres
Popis výsledku anglicky
Context. Pair cascades in polar cap regions of neutron stars are considered to be an essential process in various models of coherent radio emissions of pulsars. The cascades produce pair plasma bunch discharges in quasi-periodic spark events. The cascade properties, and therefore also the coherent radiation, depend strongly on the magnetospheric plasma properties and vary significantly across and along the polar cap. Importantly, where the radio emission emanates from in the polar cap region is still uncertain. Aims. We investigate the generation of electromagnetic waves by pair cascades and their propagation in the polar cap for three representative inclination angles of a magnetic dipole, 0°, 45°, and 90°. Methods. We use two-dimensional particle-in-cell simulations that include quantum-electrodynamic pair cascades in a charge-limited flow from the star surface. Results. We find that the discharge properties are strongly dependent on the magnetospheric current profile in the polar cap and that transport channels for high intensity Poynting flux are formed along magnetic field lines where the magnetospheric currents approach zero and where the plasma cannot carry the magnetospheric currents. There, the parallel Poynting flux component is efficiently transported away from the star and may eventually escape the magnetosphere as coherent radio waves. The Poynting flux decreases with increasing distance from the star in regions of high magnetospheric currents. Conclusions. Our model shows that no process of energy conversion from particles to waves is necessary for the coherent radio wave emission. Moreover, the pulsar radio beam does not have a cone structure; rather, the radiation generated by the oscillating electric gap fields directly escapes along open magnetic field lines in which no pair creation occurs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Astronomy and Astrophysics
ISSN
0004-6361
e-ISSN
1432-0746
Svazek periodika
691
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
18
Strana od-do
1-18
Kód UT WoS článku
001350686200005
EID výsledku v databázi Scopus
2-s2.0-85208685699