Characterization of Ordered Semigroups Generating Well Quasi-Orders of Words
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00139487" target="_blank" >RIV/00216224:14310/24:00139487 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00224-024-10172-0" target="_blank" >https://link.springer.com/article/10.1007/s00224-024-10172-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00224-024-10172-0" target="_blank" >10.1007/s00224-024-10172-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Characterization of Ordered Semigroups Generating Well Quasi-Orders of Words
Popis výsledku v původním jazyce
The notion of a quasi-order generated by a homomorphism from the semigroup of all words onto a finite ordered semigroup was introduced by Bucher et al. (Theor. Comput. Sci. 40, 131-148 1985). It naturally occurred in their studies of derivation relations associated with a given set of context-free rules, and they asked a crucial question, whether the resulting relation is a well quasi-order. We answer this question in the case of the quasi-order generated by a semigroup homomorphism. We show that the answer does not depend on the homomorphism, but it is a property of its image. Moreover, we give an algebraic characterization of those finite semigroups for which we get well quasi-orders. This characterization completes the structural characterization given by Kunc (Theor. Comput. Sci. 348, 277-293 2005) in the case of semigroups ordered by equality. Compared with Kunc's characterization, the new one has no structural meaning, and we explain why that is so. In addition, we prove that the new condition is testable in polynomial time.
Název v anglickém jazyce
Characterization of Ordered Semigroups Generating Well Quasi-Orders of Words
Popis výsledku anglicky
The notion of a quasi-order generated by a homomorphism from the semigroup of all words onto a finite ordered semigroup was introduced by Bucher et al. (Theor. Comput. Sci. 40, 131-148 1985). It naturally occurred in their studies of derivation relations associated with a given set of context-free rules, and they asked a crucial question, whether the resulting relation is a well quasi-order. We answer this question in the case of the quasi-order generated by a semigroup homomorphism. We show that the answer does not depend on the homomorphism, but it is a property of its image. Moreover, we give an algebraic characterization of those finite semigroups for which we get well quasi-orders. This characterization completes the structural characterization given by Kunc (Theor. Comput. Sci. 348, 277-293 2005) in the case of semigroups ordered by equality. Compared with Kunc's characterization, the new one has no structural meaning, and we explain why that is so. In addition, we prove that the new condition is testable in polynomial time.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-12790S" target="_blank" >GA19-12790S: Efektivní charakterizace tříd konečných pologrup a formálních jazyků</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theory of Computing Systems
ISSN
1432-4350
e-ISSN
1433-0490
Svazek periodika
68
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
380-402
Kód UT WoS článku
001200343100001
EID výsledku v databázi Scopus
2-s2.0-85190159569