Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Characterization of Ordered Semigroups Generating Well Quasi-Orders of Words

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00139487" target="_blank" >RIV/00216224:14310/24:00139487 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s00224-024-10172-0" target="_blank" >https://link.springer.com/article/10.1007/s00224-024-10172-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00224-024-10172-0" target="_blank" >10.1007/s00224-024-10172-0</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Characterization of Ordered Semigroups Generating Well Quasi-Orders of Words

  • Popis výsledku v původním jazyce

    The notion of a quasi-order generated by a homomorphism from the semigroup of all words onto a finite ordered semigroup was introduced by Bucher et al. (Theor. Comput. Sci. 40, 131-148 1985). It naturally occurred in their studies of derivation relations associated with a given set of context-free rules, and they asked a crucial question, whether the resulting relation is a well quasi-order. We answer this question in the case of the quasi-order generated by a semigroup homomorphism. We show that the answer does not depend on the homomorphism, but it is a property of its image. Moreover, we give an algebraic characterization of those finite semigroups for which we get well quasi-orders. This characterization completes the structural characterization given by Kunc (Theor. Comput. Sci. 348, 277-293 2005) in the case of semigroups ordered by equality. Compared with Kunc's characterization, the new one has no structural meaning, and we explain why that is so. In addition, we prove that the new condition is testable in polynomial time.

  • Název v anglickém jazyce

    Characterization of Ordered Semigroups Generating Well Quasi-Orders of Words

  • Popis výsledku anglicky

    The notion of a quasi-order generated by a homomorphism from the semigroup of all words onto a finite ordered semigroup was introduced by Bucher et al. (Theor. Comput. Sci. 40, 131-148 1985). It naturally occurred in their studies of derivation relations associated with a given set of context-free rules, and they asked a crucial question, whether the resulting relation is a well quasi-order. We answer this question in the case of the quasi-order generated by a semigroup homomorphism. We show that the answer does not depend on the homomorphism, but it is a property of its image. Moreover, we give an algebraic characterization of those finite semigroups for which we get well quasi-orders. This characterization completes the structural characterization given by Kunc (Theor. Comput. Sci. 348, 277-293 2005) in the case of semigroups ordered by equality. Compared with Kunc's characterization, the new one has no structural meaning, and we explain why that is so. In addition, we prove that the new condition is testable in polynomial time.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-12790S" target="_blank" >GA19-12790S: Efektivní charakterizace tříd konečných pologrup a formálních jazyků</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Theory of Computing Systems

  • ISSN

    1432-4350

  • e-ISSN

    1433-0490

  • Svazek periodika

    68

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    23

  • Strana od-do

    380-402

  • Kód UT WoS článku

    001200343100001

  • EID výsledku v databázi Scopus

    2-s2.0-85190159569