The omega-reducibility of pseudovarieties of ordered monoids representing low levels of concatenation hierarchies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00139723" target="_blank" >RIV/00216224:14310/24:00139723 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.worldscientific.com/doi/full/10.1142/S0218196724500024?srsltid=AfmBOoq2CRwCpN5aKfIpF_TSlrx94zaKhBEXVq8tbD_fgeUJii51AOAh" target="_blank" >https://www.worldscientific.com/doi/full/10.1142/S0218196724500024?srsltid=AfmBOoq2CRwCpN5aKfIpF_TSlrx94zaKhBEXVq8tbD_fgeUJii51AOAh</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218196724500024" target="_blank" >10.1142/S0218196724500024</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The omega-reducibility of pseudovarieties of ordered monoids representing low levels of concatenation hierarchies
Popis výsledku v původním jazyce
We deal with the question of the omega-reducibility of pseudovarieties of ordered monoids corresponding to levels of concatenation hierarchies of regular languages. A pseudovariety of ordered monoids V is called omega-reducible if, given a finite ordered monoid M, for every inequality of pseudowords that is valid in V, there exists an inequality of omega-words that is also valid in V and has the same "imprint" in M.Place and Zeitoun have recently proven the decidability of the membership problem for levels 1/2, 1, 3/2 and 5/2 of concatenation hierarchies with level 0 being a finite Boolean algebra of regular languages closed under quotients. The solutions of these membership problems have been found by considering a more general problem of separation of regular languages and its further generalization - a problem of covering. Following the results of Place and Zeitoun, we prove that, for every concatenation hierarchy with level 0 being represented by a locally finite pseudovariety of monoids, the pseudovarieties corresponding to levels 1/2 and 3/2 are omega-reducible. As a corollary of these results, we obtain that, for every concatenation hierarchy with level 0 being represented by a locally finite pseudovariety of monoids, the pseudovarieties corresponding to levels 3/2 and 5/2 are definable by omega-inequalities. Furthermore, in the special case of the Straubing-Therien hierarchy, using a characterization theorem for level 2 by Place and Zeitoun, we obtain that the level 2 is definable by omega-identities.
Název v anglickém jazyce
The omega-reducibility of pseudovarieties of ordered monoids representing low levels of concatenation hierarchies
Popis výsledku anglicky
We deal with the question of the omega-reducibility of pseudovarieties of ordered monoids corresponding to levels of concatenation hierarchies of regular languages. A pseudovariety of ordered monoids V is called omega-reducible if, given a finite ordered monoid M, for every inequality of pseudowords that is valid in V, there exists an inequality of omega-words that is also valid in V and has the same "imprint" in M.Place and Zeitoun have recently proven the decidability of the membership problem for levels 1/2, 1, 3/2 and 5/2 of concatenation hierarchies with level 0 being a finite Boolean algebra of regular languages closed under quotients. The solutions of these membership problems have been found by considering a more general problem of separation of regular languages and its further generalization - a problem of covering. Following the results of Place and Zeitoun, we prove that, for every concatenation hierarchy with level 0 being represented by a locally finite pseudovariety of monoids, the pseudovarieties corresponding to levels 1/2 and 3/2 are omega-reducible. As a corollary of these results, we obtain that, for every concatenation hierarchy with level 0 being represented by a locally finite pseudovariety of monoids, the pseudovarieties corresponding to levels 3/2 and 5/2 are definable by omega-inequalities. Furthermore, in the special case of the Straubing-Therien hierarchy, using a characterization theorem for level 2 by Place and Zeitoun, we obtain that the level 2 is definable by omega-identities.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-12790S" target="_blank" >GA19-12790S: Efektivní charakterizace tříd konečných pologrup a formálních jazyků</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Algebra and Computation
ISSN
0218-1967
e-ISSN
1793-6500
Svazek periodika
34
Číslo periodika v rámci svazku
01
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
49
Strana od-do
87-135
Kód UT WoS článku
001179257000004
EID výsledku v databázi Scopus
2-s2.0-85187575125