Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The omega-reducibility of pseudovarieties of ordered monoids representing low levels of concatenation hierarchies

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00139723" target="_blank" >RIV/00216224:14310/24:00139723 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.worldscientific.com/doi/full/10.1142/S0218196724500024?srsltid=AfmBOoq2CRwCpN5aKfIpF_TSlrx94zaKhBEXVq8tbD_fgeUJii51AOAh" target="_blank" >https://www.worldscientific.com/doi/full/10.1142/S0218196724500024?srsltid=AfmBOoq2CRwCpN5aKfIpF_TSlrx94zaKhBEXVq8tbD_fgeUJii51AOAh</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S0218196724500024" target="_blank" >10.1142/S0218196724500024</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The omega-reducibility of pseudovarieties of ordered monoids representing low levels of concatenation hierarchies

  • Popis výsledku v původním jazyce

    We deal with the question of the omega-reducibility of pseudovarieties of ordered monoids corresponding to levels of concatenation hierarchies of regular languages. A pseudovariety of ordered monoids V is called omega-reducible if, given a finite ordered monoid M, for every inequality of pseudowords that is valid in V, there exists an inequality of omega-words that is also valid in V and has the same "imprint" in M.Place and Zeitoun have recently proven the decidability of the membership problem for levels 1/2, 1, 3/2 and 5/2 of concatenation hierarchies with level 0 being a finite Boolean algebra of regular languages closed under quotients. The solutions of these membership problems have been found by considering a more general problem of separation of regular languages and its further generalization - a problem of covering. Following the results of Place and Zeitoun, we prove that, for every concatenation hierarchy with level 0 being represented by a locally finite pseudovariety of monoids, the pseudovarieties corresponding to levels 1/2 and 3/2 are omega-reducible. As a corollary of these results, we obtain that, for every concatenation hierarchy with level 0 being represented by a locally finite pseudovariety of monoids, the pseudovarieties corresponding to levels 3/2 and 5/2 are definable by omega-inequalities. Furthermore, in the special case of the Straubing-Therien hierarchy, using a characterization theorem for level 2 by Place and Zeitoun, we obtain that the level 2 is definable by omega-identities.

  • Název v anglickém jazyce

    The omega-reducibility of pseudovarieties of ordered monoids representing low levels of concatenation hierarchies

  • Popis výsledku anglicky

    We deal with the question of the omega-reducibility of pseudovarieties of ordered monoids corresponding to levels of concatenation hierarchies of regular languages. A pseudovariety of ordered monoids V is called omega-reducible if, given a finite ordered monoid M, for every inequality of pseudowords that is valid in V, there exists an inequality of omega-words that is also valid in V and has the same "imprint" in M.Place and Zeitoun have recently proven the decidability of the membership problem for levels 1/2, 1, 3/2 and 5/2 of concatenation hierarchies with level 0 being a finite Boolean algebra of regular languages closed under quotients. The solutions of these membership problems have been found by considering a more general problem of separation of regular languages and its further generalization - a problem of covering. Following the results of Place and Zeitoun, we prove that, for every concatenation hierarchy with level 0 being represented by a locally finite pseudovariety of monoids, the pseudovarieties corresponding to levels 1/2 and 3/2 are omega-reducible. As a corollary of these results, we obtain that, for every concatenation hierarchy with level 0 being represented by a locally finite pseudovariety of monoids, the pseudovarieties corresponding to levels 3/2 and 5/2 are definable by omega-inequalities. Furthermore, in the special case of the Straubing-Therien hierarchy, using a characterization theorem for level 2 by Place and Zeitoun, we obtain that the level 2 is definable by omega-identities.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10100 - Mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-12790S" target="_blank" >GA19-12790S: Efektivní charakterizace tříd konečných pologrup a formálních jazyků</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Algebra and Computation

  • ISSN

    0218-1967

  • e-ISSN

    1793-6500

  • Svazek periodika

    34

  • Číslo periodika v rámci svazku

    01

  • Stát vydavatele periodika

    SG - Singapurská republika

  • Počet stran výsledku

    49

  • Strana od-do

    87-135

  • Kód UT WoS článku

    001179257000004

  • EID výsledku v databázi Scopus

    2-s2.0-85187575125