Complexity of Weak Bisimilarity and Regularity for BPA and BPP
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F03%3A00008472" target="_blank" >RIV/00216224:14330/03:00008472 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Complexity of Weak Bisimilarity and Regularity for BPA and BPP
Popis výsledku v původním jazyce
It is an open problem whether weak bisimilarity is decidable for Basic Process Algebra (BPA) and Basic Parallel Processes (BPP). A PSPACE lower bound for BPA and NP lower bound for BPP were demonstrated by Stribrna. Mayr recently achieved a result, saying that weak bisimilarity for BPP is a hard problem for the second level of polynomial hierarchy. We improve this lower bound to PSPACE, moreover for the restricted class of normed BPP. Weak regularity (finiteness) of BPA and BPP is not known to be decidable either. In the case of BPP there is a hardness result for the second level of arithmetical hierarchy by Mayr, which we improve to PSPACE. No lower bound has previously been established for BPA. We demonstrate DP-hardness, which in particular impliesboth NP and coNP-hardness. In each of the bisimulation/regularity problems we consider also the classes of normed processes. Finally we show how the technique for proving co-NP lower bound for weak bisimilarity of BPA can be applied to st
Název v anglickém jazyce
Complexity of Weak Bisimilarity and Regularity for BPA and BPP
Popis výsledku anglicky
It is an open problem whether weak bisimilarity is decidable for Basic Process Algebra (BPA) and Basic Parallel Processes (BPP). A PSPACE lower bound for BPA and NP lower bound for BPP were demonstrated by Stribrna. Mayr recently achieved a result, saying that weak bisimilarity for BPP is a hard problem for the second level of polynomial hierarchy. We improve this lower bound to PSPACE, moreover for the restricted class of normed BPP. Weak regularity (finiteness) of BPA and BPP is not known to be decidable either. In the case of BPP there is a hardness result for the second level of arithmetical hierarchy by Mayr, which we improve to PSPACE. No lower bound has previously been established for BPA. We demonstrate DP-hardness, which in particular impliesboth NP and coNP-hardness. In each of the bisimulation/regularity problems we consider also the classes of normed processes. Finally we show how the technique for proving co-NP lower bound for weak bisimilarity of BPA can be applied to st
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F03%2F1161" target="_blank" >GA201/03/1161: Verifikace nekonečně stavových systémů</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2003
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Structures in Computer Science
ISSN
—
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
21
Strana od-do
567587
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—