Kvantově informatický přístup k Isingovu modelu
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F04%3A00010771" target="_blank" >RIV/00216224:14330/04:00010771 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quantum information approach to the Ising model
Popis výsledku v původním jazyce
Simple physical interactions between spin-1/2 particles may result in quantum states that exhibit exotic correlations that are difficult to find if one simply explores state spaces of multipartite systems. In particular, we present a detailed investigation of the well-known Ising model of a chain (ring) of spin-1/2 particles (qubits) in a transverse magnetic field. We present explicit expressions for eigenstates of the model Hamiltonian for arbitrary number of spin-1/2 particles in the chain in the standard (computer) basis, and we investigate quantum entanglement between individual qubits. We analyze bipartite as well as multipartite entanglement in the ground state of the model. In particular, we show that bipartite entanglement between pairs of qubits of the Ising chain (measured in terms of a concurrence) as a function of the parameter has a maximum around the point = 1, and it monotonically decreases for large values of . We prove that in the limit this state is locally unitary eq
Název v anglickém jazyce
Quantum information approach to the Ising model
Popis výsledku anglicky
Simple physical interactions between spin-1/2 particles may result in quantum states that exhibit exotic correlations that are difficult to find if one simply explores state spaces of multipartite systems. In particular, we present a detailed investigation of the well-known Ising model of a chain (ring) of spin-1/2 particles (qubits) in a transverse magnetic field. We present explicit expressions for eigenstates of the model Hamiltonian for arbitrary number of spin-1/2 particles in the chain in the standard (computer) basis, and we investigate quantum entanglement between individual qubits. We analyze bipartite as well as multipartite entanglement in the ground state of the model. In particular, we show that bipartite entanglement between pairs of qubits of the Ising chain (measured in terms of a concurrence) as a function of the parameter has a maximum around the point = 1, and it monotonically decreases for large values of . We prove that in the limit this state is locally unitary eq
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BE - Teoretická fyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F01%2F0413" target="_blank" >GA201/01/0413: Kvantové zpracování informací</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2004
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review A
ISSN
1050-2947
e-ISSN
—
Svazek periodika
70
Číslo periodika v rámci svazku
032313
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—