Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Dolování relevantních textových dokumentů algoritmem k-NN trénovaným pouze pomocí pozitivních příkladů

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F05%3A00013631" target="_blank" >RIV/00216224:14330/05:00013631 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Mining Relevant Text Documents Using Ranking-Based k-NN Algorithms Trained by Only Positive Examples

  • Popis výsledku v původním jazyce

    The problem of mining relevant information from large numbers of unstructured text documents is often handled with various machine learning algorithms trained using both positive and negative examples that were prepared by an expert in a~given specific domain. However, when just positive examples are available, the task requires algorithms adapted to the different situation. A~modified k-nearest neighbors algorithm, trained using only positive examples, can classify by way of ranking unlabeled instancesdepending on their similarity to training examples. This procedure provides a~significant part of unlabeled positive instances with high precision. The main objective is to find a~method for mining relevant documents from large volumes (hundreds or thousands) of similar medical text files. Experiments and comparisons with various real data obtained from several Internet resources and represented as a bag of words provided---under specific conditions---quite acceptable results from the p

  • Název v anglickém jazyce

    Mining Relevant Text Documents Using Ranking-Based k-NN Algorithms Trained by Only Positive Examples

  • Popis výsledku anglicky

    The problem of mining relevant information from large numbers of unstructured text documents is often handled with various machine learning algorithms trained using both positive and negative examples that were prepared by an expert in a~given specific domain. However, when just positive examples are available, the task requires algorithms adapted to the different situation. A~modified k-nearest neighbors algorithm, trained using only positive examples, can classify by way of ranking unlabeled instancesdepending on their similarity to training examples. This procedure provides a~significant part of unlabeled positive instances with high precision. The main objective is to find a~method for mining relevant documents from large volumes (hundreds or thousands) of similar medical text files. Experiments and comparisons with various real data obtained from several Internet resources and represented as a bag of words provided---under specific conditions---quite acceptable results from the p

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2005

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Znalosti 2005, sborník příspěvků

  • ISBN

    80-248-0755-6

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    12

  • Strana od-do

    29-40

  • Název nakladatele

    VŠB--Technická univerzita Ostrava

  • Místo vydání

    Ostrava

  • Místo konání akce

    Stará Lesná

  • Datum konání akce

    9. 2. 2005

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku