Plné generování neekvivalentních matroidů
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F06%3A00016792" target="_blank" >RIV/00216224:14330/06:00016792 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Equivalence-free exhaustive generation of matroid representations
Popis výsledku v původním jazyce
In this paper we present an algorithm for the problem of exhaustive equivalence-free generation of 3-connected matroids which are represented by a matrix over some finite (partial) field, and which contain a given minor. The nature of this problem is exponential, and it appears to be much harder than, say, isomorph-free generation of graphs. Still, our algorithm is very suitable for practical use, and it has been successfully implemented in our matroid computing package MACEK [http://www.mcs.vuw.ac.nz/research/macek, 2001-05].
Název v anglickém jazyce
Equivalence-free exhaustive generation of matroid representations
Popis výsledku anglicky
In this paper we present an algorithm for the problem of exhaustive equivalence-free generation of 3-connected matroids which are represented by a matrix over some finite (partial) field, and which contain a given minor. The nature of this problem is exponential, and it appears to be much harder than, say, isomorph-free generation of graphs. Still, our algorithm is very suitable for practical use, and it has been successfully implemented in our matroid computing package MACEK [http://www.mcs.vuw.ac.nz/research/macek, 2001-05].
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1M0545" target="_blank" >1M0545: Institut Teoretické Informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2006
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete Applied Mathematics
ISSN
0166-218X
e-ISSN
—
Svazek periodika
154
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
1210-1222
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—