Aplikace kvantových algoritmů při studiu automorfismů grup
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F07%3A00020702" target="_blank" >RIV/00216224:14330/07:00020702 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Applications of quantum algorithms to the study of group automorphisms
Popis výsledku v původním jazyce
We discuss three applications of efficient quantum algorithms to determining properties of permutations and group automorphisms. The first uses the Bernstein-Vazirani algorithm to determine an unknown homomorphism from $Z_{p-1}^{m}$ to $Aut(Z_{p})$ where$p$ is prime. The remaining two make use of modifications of the Grover search algorithm. The first finds the fixed point of a permutation or an automorphism (assuming it has only one besides the identity). It can be generalized to find cycles of a specified size for permutations or orbits of a specified size for automorphisms. The second finds which of a set of permutations or automorphisms maps one particular element of a set or group onto another. This has relevance to the conjugacy problem for groups. We show how two of these algorithms can be implemented via programmable quantum processors. This approach opens new perspectives in quantum information processing, wherein both the data and the programs are represented by states of qu
Název v anglickém jazyce
Applications of quantum algorithms to the study of group automorphisms
Popis výsledku anglicky
We discuss three applications of efficient quantum algorithms to determining properties of permutations and group automorphisms. The first uses the Bernstein-Vazirani algorithm to determine an unknown homomorphism from $Z_{p-1}^{m}$ to $Aut(Z_{p})$ where$p$ is prime. The remaining two make use of modifications of the Grover search algorithm. The first finds the fixed point of a permutation or an automorphism (assuming it has only one besides the identity). It can be generalized to find cycles of a specified size for permutations or orbits of a specified size for automorphisms. The second finds which of a set of permutations or automorphisms maps one particular element of a set or group onto another. This has relevance to the conjugacy problem for groups. We show how two of these algorithms can be implemented via programmable quantum processors. This approach opens new perspectives in quantum information processing, wherein both the data and the programs are represented by states of qu
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F07%2F0603" target="_blank" >GA201/07/0603: Výpočty, komunikace a bezpečnost kvantových distribuovaných systémů</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2007
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review A
ISSN
1050-2947
e-ISSN
—
Svazek periodika
Vol. 76
Číslo periodika v rámci svazku
No. 1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
6
Strana od-do
"A012324"
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—