Single-cell-based image analysis of high-throughput cell array screens for quantification of viral infection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F09%3A00034133" target="_blank" >RIV/00216224:14330/09:00034133 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Single-cell-based image analysis of high-throughput cell array screens for quantification of viral infection
Popis výsledku v původním jazyce
The identification of eukaryotic genes involved in virus entry and replication is important for understanding viral infection. Our goal is to develop a siRNA-based screening system using cell arrays and high-throughput (HT) fluorescence microscopy. A central issue is efficient, robust, and automated single-cell-based analysis of massive image datasets. We have developed an image analysis approach that comprises (i) a novel, gradient-based thresholding scheme for cell nuclei segmentation which does not require subsequent postprocessing steps for separation of clustered nuclei, (ii) quantification of the virus signal in the neighborhood of cell nuclei, (iii) localization of regions with transfected cells by combining model-based circle fitting and grid fitting, (iv) cell classification as infected or noninfected, and (v) image quality control (e.g., identification of out-of-focus images).
Název v anglickém jazyce
Single-cell-based image analysis of high-throughput cell array screens for quantification of viral infection
Popis výsledku anglicky
The identification of eukaryotic genes involved in virus entry and replication is important for understanding viral infection. Our goal is to develop a siRNA-based screening system using cell arrays and high-throughput (HT) fluorescence microscopy. A central issue is efficient, robust, and automated single-cell-based analysis of massive image datasets. We have developed an image analysis approach that comprises (i) a novel, gradient-based thresholding scheme for cell nuclei segmentation which does not require subsequent postprocessing steps for separation of clustered nuclei, (ii) quantification of the virus signal in the neighborhood of cell nuclei, (iii) localization of regions with transfected cells by combining model-based circle fitting and grid fitting, (iv) cell classification as infected or noninfected, and (v) image quality control (e.g., identification of out-of-focus images).
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/2B06052" target="_blank" >2B06052: Vytipování markerů, screening a časná diagnostika nádorových onemocnění pomocí vysoce automatizovaného zpracování multidimenzionálních biomedicínských obrazů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Cytometry Part A
ISSN
1552-4922
e-ISSN
—
Svazek periodika
75A
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
000264513800005
EID výsledku v databázi Scopus
—