Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Software Framework for Topic Modelling with Large Corpora

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F10%3A00043991" target="_blank" >RIV/00216224:14330/10:00043991 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Software Framework for Topic Modelling with Large Corpora

  • Popis výsledku v původním jazyce

    Large corpora are ubiquitous in today's world and memory quickly becomes the limiting factor in practical applications of the Vector Space Model (VSM). We identify gap in existing VSM implementations, which is their scalability and ease of use. We describe a Natural Language Processing software framework which is based on the idea of document streaming, i.e. processing corpora document after document, in a memory independent fashion. In this framework, we implement several popular algorithms for topicalinference, including Latent Semantic Analysis and Latent Dirichlet Allocation, in a way that makes them completely independent of the training corpus size. Particular emphasis is placed on straightforward and intuitive framework design, so that modifications and extensions of the methods and/or their application by interested practitioners are effortless. We demonstrate the usefulness of our approach on a real-world scenario of computing document similarities within an existing digital

  • Název v anglickém jazyce

    Software Framework for Topic Modelling with Large Corpora

  • Popis výsledku anglicky

    Large corpora are ubiquitous in today's world and memory quickly becomes the limiting factor in practical applications of the Vector Space Model (VSM). We identify gap in existing VSM implementations, which is their scalability and ease of use. We describe a Natural Language Processing software framework which is based on the idea of document streaming, i.e. processing corpora document after document, in a memory independent fashion. In this framework, we implement several popular algorithms for topicalinference, including Latent Semantic Analysis and Latent Dirichlet Allocation, in a way that makes them completely independent of the training corpus size. Particular emphasis is placed on straightforward and intuitive framework design, so that modifications and extensions of the methods and/or their application by interested practitioners are effortless. We demonstrate the usefulness of our approach on a real-world scenario of computing document similarities within an existing digital

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JC - Počítačový hardware a software

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of LREC 2010 workshop New Challenges for NLP Frameworks

  • ISBN

    2-9517408-6-7

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

  • Název nakladatele

    University of Malta

  • Místo vydání

    Valletta, Malta

  • Místo konání akce

    Valletta, Malta

  • Datum konání akce

    22. 5. 2010

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku