Software Framework for Topic Modelling with Large Corpora
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F10%3A00043991" target="_blank" >RIV/00216224:14330/10:00043991 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Software Framework for Topic Modelling with Large Corpora
Popis výsledku v původním jazyce
Large corpora are ubiquitous in today's world and memory quickly becomes the limiting factor in practical applications of the Vector Space Model (VSM). We identify gap in existing VSM implementations, which is their scalability and ease of use. We describe a Natural Language Processing software framework which is based on the idea of document streaming, i.e. processing corpora document after document, in a memory independent fashion. In this framework, we implement several popular algorithms for topicalinference, including Latent Semantic Analysis and Latent Dirichlet Allocation, in a way that makes them completely independent of the training corpus size. Particular emphasis is placed on straightforward and intuitive framework design, so that modifications and extensions of the methods and/or their application by interested practitioners are effortless. We demonstrate the usefulness of our approach on a real-world scenario of computing document similarities within an existing digital
Název v anglickém jazyce
Software Framework for Topic Modelling with Large Corpora
Popis výsledku anglicky
Large corpora are ubiquitous in today's world and memory quickly becomes the limiting factor in practical applications of the Vector Space Model (VSM). We identify gap in existing VSM implementations, which is their scalability and ease of use. We describe a Natural Language Processing software framework which is based on the idea of document streaming, i.e. processing corpora document after document, in a memory independent fashion. In this framework, we implement several popular algorithms for topicalinference, including Latent Semantic Analysis and Latent Dirichlet Allocation, in a way that makes them completely independent of the training corpus size. Particular emphasis is placed on straightforward and intuitive framework design, so that modifications and extensions of the methods and/or their application by interested practitioners are effortless. We demonstrate the usefulness of our approach on a real-world scenario of computing document similarities within an existing digital
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of LREC 2010 workshop New Challenges for NLP Frameworks
ISBN
2-9517408-6-7
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
—
Název nakladatele
University of Malta
Místo vydání
Valletta, Malta
Místo konání akce
Valletta, Malta
Datum konání akce
22. 5. 2010
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—