The DAG-width of directed graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F12%3A00057892" target="_blank" >RIV/00216224:14330/12:00057892 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jctb.2012.04.004" target="_blank" >http://dx.doi.org/10.1016/j.jctb.2012.04.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jctb.2012.04.004" target="_blank" >10.1016/j.jctb.2012.04.004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The DAG-width of directed graphs
Popis výsledku v původním jazyce
Tree-width is a well-known metric on undirected graphs that measures how tree-like a graph is and gives a notion of graph decomposition that proves useful in algorithm design. Tree-width can be characterised by a graph searching game where a number of cops attempt to capture a robber. We consider the natural adaptation of this game to directed graphs and show that monotone strategies in the game yield a measure, called DAG-width, that can be seen to describe how close a directed graph is to a directed acyclic graph (DAG). We also provide an associated decomposition and show how it is useful for developing algorithms on directed graphs. In particular, we show that the problem of determining the winner of a parity game is solvable in polynomial time on graphs of bounded DAG-width. We also consider the relationship between DAG-width and other connectivity measures such as directed tree-width and path-width.
Název v anglickém jazyce
The DAG-width of directed graphs
Popis výsledku anglicky
Tree-width is a well-known metric on undirected graphs that measures how tree-like a graph is and gives a notion of graph decomposition that proves useful in algorithm design. Tree-width can be characterised by a graph searching game where a number of cops attempt to capture a robber. We consider the natural adaptation of this game to directed graphs and show that monotone strategies in the game yield a measure, called DAG-width, that can be seen to describe how close a directed graph is to a directed acyclic graph (DAG). We also provide an associated decomposition and show how it is useful for developing algorithms on directed graphs. In particular, we show that the problem of determining the winner of a parity game is solvable in polynomial time on graphs of bounded DAG-width. We also consider the relationship between DAG-width and other connectivity measures such as directed tree-width and path-width.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GC201%2F09%2FJ021" target="_blank" >GC201/09/J021: Strukturální teorie grafů a parametrizovaná složitost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Combinatorial Theory, Ser B
ISSN
0095-8956
e-ISSN
—
Svazek periodika
102
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
24
Strana od-do
900-923
Kód UT WoS článku
000305492000005
EID výsledku v databázi Scopus
—