Algorithms for Efficient Computation of Convolution
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F13%3A00065930" target="_blank" >RIV/00216224:14330/13:00065930 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.intechopen.com/books/design-and-architectures-for-digital-signal-processing/algorithms-for-efficient-computation-of-convolution" target="_blank" >http://www.intechopen.com/books/design-and-architectures-for-digital-signal-processing/algorithms-for-efficient-computation-of-convolution</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5772/3456" target="_blank" >10.5772/3456</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Algorithms for Efficient Computation of Convolution
Popis výsledku v původním jazyce
Convolution is an important mathematical tool in both fields of signal and image processing. It is em-ployed in filtering, denoising, edge detection, correlation, compression, deconvolution, simulation, and in many other applications. Although the concept of convolution is not new, the efficient computation of convolution is still an open topic. As the amount of processed data is constantly increasing, there is considerable request for fast manipulation with huge data. Moreover, there is demand for fastalgorithms which can exploit computational power of modern parallel architectures. The aim of this chapter is to review the algorithms and approaches for computation of convolution with regards to various properties such as signal and kernel size or kernel separability (when pro-cessing n-dimensional signals). Target architectures include superscalar and parallel processing units (namely CPU, DSP, and GPU), programmable architectures (e.g. FPGA), and distributed systems (such as grids).
Název v anglickém jazyce
Algorithms for Efficient Computation of Convolution
Popis výsledku anglicky
Convolution is an important mathematical tool in both fields of signal and image processing. It is em-ployed in filtering, denoising, edge detection, correlation, compression, deconvolution, simulation, and in many other applications. Although the concept of convolution is not new, the efficient computation of convolution is still an open topic. As the amount of processed data is constantly increasing, there is considerable request for fast manipulation with huge data. Moreover, there is demand for fastalgorithms which can exploit computational power of modern parallel architectures. The aim of this chapter is to review the algorithms and approaches for computation of convolution with regards to various properties such as signal and kernel size or kernel separability (when pro-cessing n-dimensional signals). Target architectures include superscalar and parallel processing units (namely CPU, DSP, and GPU), programmable architectures (e.g. FPGA), and distributed systems (such as grids).
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP302%2F12%2FG157" target="_blank" >GBP302/12/G157: Dynamika a organizace chromosomů během buněčného cyklu a při diferenciaci v normě a patologii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Design and Architectures for Digital Signal Processing
ISBN
9789535108740
Počet stran výsledku
30
Strana od-do
179-208
Počet stran knihy
314
Název nakladatele
InTech
Místo vydání
Rijeka (CRO)
Kód UT WoS kapitoly
—