Computing the stretch of an embedded graph
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F14%3A00074093" target="_blank" >RIV/00216224:14330/14:00074093 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1137/130945636" target="_blank" >http://dx.doi.org/10.1137/130945636</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/130945636" target="_blank" >10.1137/130945636</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computing the stretch of an embedded graph
Popis výsledku v původním jazyce
Let G be a graph embedded in an orientable surface Sigma, possibly with edge weights, and denote by len(gamma) the length (the number of edges or the sum of the edge weights) of a cycle. in G. The stretch of a graph embedded on a surface is the minimum of len(alpha) . len(beta) over all pairs of cycles alpha and beta that cross exactly once. We provide two algorithms to compute the stretch of an embedded graph, each based on a different principle. The first algorithm is based on surgery and computes thestretch in time O(g(4)n log n) with high probability, or in time O(g(4)n log(2) n) in the worst case, where g is the genus of the surface S and n is the number of vertices in G. The second algorithm is based on using a short homology basis and computesthe stretch in time O(n(2) log n + n(2)g + ng(3)).
Název v anglickém jazyce
Computing the stretch of an embedded graph
Popis výsledku anglicky
Let G be a graph embedded in an orientable surface Sigma, possibly with edge weights, and denote by len(gamma) the length (the number of edges or the sum of the edge weights) of a cycle. in G. The stretch of a graph embedded on a surface is the minimum of len(alpha) . len(beta) over all pairs of cycles alpha and beta that cross exactly once. We provide two algorithms to compute the stretch of an embedded graph, each based on a different principle. The first algorithm is based on surgery and computes thestretch in time O(g(4)n log n) with high probability, or in time O(g(4)n log(2) n) in the worst case, where g is the genus of the surface S and n is the number of vertices in G. The second algorithm is based on using a short homology basis and computesthe stretch in time O(n(2) log n + n(2)g + ng(3)).
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Kreslení grafů a jejich geometrické reprezentace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Discrete Mathematics
ISSN
0895-4801
e-ISSN
—
Svazek periodika
28
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
1391-1401
Kód UT WoS článku
000343230800019
EID výsledku v databázi Scopus
—