POSTER: DNS Traffic Analysis for Malicious Domains Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F15%3A00080508" target="_blank" >RIV/00216224:14330/15:00080508 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
POSTER: DNS Traffic Analysis for Malicious Domains Detection
Popis výsledku v původním jazyce
The web has become the medium of choice for people to search for information, conduct business, and enjoy entertainment. At the same time, the web has also become the primary platform used by miscreants to attack users. For example, drive-by-download attacks are a popular choice among bot herders to grow their botnets. In this poster we present our methodology for detecting any connection to malicious domain. Our detection method is based on a blacklist of malicious domains. We process the network traffic, particularly DNS traffic. We analyze all DNS requests and match the query with the blacklist. The blacklist of malicious domains is updated automatically and the detection is in the real time. We applied our methodology on a packet capture (pcap) file which contains traffic to malicious domains and we proved that our methodology can successfully detect the connections to malicious domains.
Název v anglickém jazyce
POSTER: DNS Traffic Analysis for Malicious Domains Detection
Popis výsledku anglicky
The web has become the medium of choice for people to search for information, conduct business, and enjoy entertainment. At the same time, the web has also become the primary platform used by miscreants to attack users. For example, drive-by-download attacks are a popular choice among bot herders to grow their botnets. In this poster we present our methodology for detecting any connection to malicious domain. Our detection method is based on a blacklist of malicious domains. We process the network traffic, particularly DNS traffic. We analyze all DNS requests and match the query with the blacklist. The blacklist of malicious domains is updated automatically and the detection is in the real time. We applied our methodology on a packet capture (pcap) file which contains traffic to malicious domains and we proved that our methodology can successfully detect the connections to malicious domains.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/OFMASUN201301" target="_blank" >OFMASUN201301: CIRC - Mobilní dedikované zařízení pro naplňování schopností reakce na počítačové incidenty</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů