Narrow passage identification using cell decomposition approximation and minimum spanning tree
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F15%3A00083544" target="_blank" >RIV/00216224:14330/15:00083544 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Narrow passage identification using cell decomposition approximation and minimum spanning tree
Popis výsledku v původním jazyce
Narrow passage problem is a problematic issue facing the sampling-based motion planner. In this paper, a new approach for narrow areas identification is proposed. The quad-tree cell-decomposition approximation is used to divide the free workspace into smaller cells, and build a graph of adjacency for these. The proposed method follows the graph edges and finds a sequence of cells, which have the same size, preceded and followed by a bigger cell size. The sequence, which has the pattern bigger-smaller-bigger cells size, is more likely to be located in a narrow area. The minimum spanning tree algorithm is used, to linearize adjacency graph. Many methods have been proposed to manipulate the edges cost in the graph, in order to make the generated spanningtree traverse through narrow passages in detectable ways. Five methods have been proposed, some of them give bad results, and the others give better on in simulations
Název v anglickém jazyce
Narrow passage identification using cell decomposition approximation and minimum spanning tree
Popis výsledku anglicky
Narrow passage problem is a problematic issue facing the sampling-based motion planner. In this paper, a new approach for narrow areas identification is proposed. The quad-tree cell-decomposition approximation is used to divide the free workspace into smaller cells, and build a graph of adjacency for these. The proposed method follows the graph edges and finds a sequence of cells, which have the same size, preceded and followed by a bigger cell size. The sequence, which has the pattern bigger-smaller-bigger cells size, is more likely to be located in a narrow area. The minimum spanning tree algorithm is used, to linearize adjacency graph. Many methods have been proposed to manipulate the edges cost in the graph, in order to make the generated spanningtree traverse through narrow passages in detectable ways. Five methods have been proposed, some of them give bad results, and the others give better on in simulations
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Conference of Soft Computing, Mendel Journal series
ISBN
—
ISSN
1803-3814
e-ISSN
—
Počet stran výsledku
8
Strana od-do
131-138
Název nakladatele
BUT FME
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
1. 1. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—