Power of the interactive proof systems with verifiers modeled by semi-quantum two-way finite automata
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F15%3A00084456" target="_blank" >RIV/00216224:14330/15:00084456 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0890540115000140" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0890540115000140</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ic.2015.02.003" target="_blank" >10.1016/j.ic.2015.02.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Power of the interactive proof systems with verifiers modeled by semi-quantum two-way finite automata
Popis výsledku v původním jazyce
Interactive proof systems (IP) are very powerful - languages they can accept form exactly PSPACE. They represent also one of the very fundamental concepts of theoretical computing and a model of computation by interactions. One of the key players in IP is verifier. In the original model of IP whose power is that of PSPACE, the only restriction on verifiers is that they work in randomized polynomial time. Because of such key importance of IP, it is of large interest to find out how powerful will IP be when verifiers are more restricted. So far this was explored for the case that verifiers are two-way probabilistic finite automata (Dwork and Stockmeyer, 1990) and one-way quantum finite automata as well as two-way quantum finite automata (Nishimura and Yamakami, 2009). IP in which verifiers use public randomization is called Arthur-Merlin proof systems (AM). AM with verifiers modeled by Turing Machines augmented with a fixed-size quantum register (qAM) were studied also by Yakaryilmaz (20
Název v anglickém jazyce
Power of the interactive proof systems with verifiers modeled by semi-quantum two-way finite automata
Popis výsledku anglicky
Interactive proof systems (IP) are very powerful - languages they can accept form exactly PSPACE. They represent also one of the very fundamental concepts of theoretical computing and a model of computation by interactions. One of the key players in IP is verifier. In the original model of IP whose power is that of PSPACE, the only restriction on verifiers is that they work in randomized polynomial time. Because of such key importance of IP, it is of large interest to find out how powerful will IP be when verifiers are more restricted. So far this was explored for the case that verifiers are two-way probabilistic finite automata (Dwork and Stockmeyer, 1990) and one-way quantum finite automata as well as two-way quantum finite automata (Nishimura and Yamakami, 2009). IP in which verifiers use public randomization is called Arthur-Merlin proof systems (AM). AM with verifiers modeled by Turing Machines augmented with a fixed-size quantum register (qAM) were studied also by Yakaryilmaz (20
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/EE2.3.30.0009" target="_blank" >EE2.3.30.0009: Zaměstnáním čerstvých absolventů doktorského studia k vědecké excelenci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information and computation
ISSN
0890-5401
e-ISSN
—
Svazek periodika
241
Číslo periodika v rámci svazku
April 2015
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
197-214
Kód UT WoS článku
000353352800009
EID výsledku v databázi Scopus
—