Local Load Optimization in Smart Grids with Bayesian Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F16%3A00090403" target="_blank" >RIV/00216224:14330/16:00090403 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/SMC.2016.7844862" target="_blank" >http://dx.doi.org/10.1109/SMC.2016.7844862</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SMC.2016.7844862" target="_blank" >10.1109/SMC.2016.7844862</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Local Load Optimization in Smart Grids with Bayesian Networks
Popis výsledku v původním jazyce
One of the main goals of the power distribution utilities is to provide stable supply of the power load. The growing popularity of smart grids, i.e. power grids enhanced with modern ICT, opened new possibilities to make the grid more efficient, secure and reliable. However, by introducing new elements into the infrastructure, such as small-scale photovoltaic power plants, the management of power load is becoming more challenging. In the paper, we address the issue of prevalent load management methods, which often lack sufficient flexibility to match growing complexity of the grid. We have developed a local load management component as an alternative to the still widely used ripple control technology. Our component is capable of individual water heating control by utilising customized TOU tariff schedules. The component uses Bayesian network model to incorporate uncertainties caused by inconsistent or incomplete information collected from smart meters.
Název v anglickém jazyce
Local Load Optimization in Smart Grids with Bayesian Networks
Popis výsledku anglicky
One of the main goals of the power distribution utilities is to provide stable supply of the power load. The growing popularity of smart grids, i.e. power grids enhanced with modern ICT, opened new possibilities to make the grid more efficient, secure and reliable. However, by introducing new elements into the infrastructure, such as small-scale photovoltaic power plants, the management of power load is becoming more challenging. In the paper, we address the issue of prevalent load management methods, which often lack sufficient flexibility to match growing complexity of the grid. We have developed a local load management component as an alternative to the still widely used ripple control technology. Our component is capable of individual water heating control by utilising customized TOU tariff schedules. The component uses Bayesian network model to incorporate uncertainties caused by inconsistent or incomplete information collected from smart meters.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2016)
ISBN
9781509018970
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
4021-4027
Název nakladatele
IEEE
Místo vydání
Neuveden
Místo konání akce
Budapest
Datum konání akce
1. 1. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—