Anomaly Detection in Smart Grid Data: An Experience Report
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F16%3A00090404" target="_blank" >RIV/00216224:14330/16:00090404 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/SMC.2016.7844583" target="_blank" >http://dx.doi.org/10.1109/SMC.2016.7844583</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SMC.2016.7844583" target="_blank" >10.1109/SMC.2016.7844583</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Anomaly Detection in Smart Grid Data: An Experience Report
Popis výsledku v původním jazyce
In recent years, we have been witnessing profound transformation of energy distribution systems fueled by Information and Communication Technologies (ICT), towards the so called Smart Grid. However, while the Smart Grid design strategies have been studied by academia, only anecdotal guidance is provided to the industry with respect to increasing the level of grid intelligence. In this paper, we report on a successful project in assisting the industry in this way, via conducting a large anomaly-detection study on the data of one of the power distribution companies in the Czech Republic. In the study, we move away from the concept of single events identified as anomaly to the concept of collective anomaly, that is itemsets of events that may be anomalous based on their patterns of appearance. This can assist the operators of the distribution system in the transformation of their grid to a smarter grid.
Název v anglickém jazyce
Anomaly Detection in Smart Grid Data: An Experience Report
Popis výsledku anglicky
In recent years, we have been witnessing profound transformation of energy distribution systems fueled by Information and Communication Technologies (ICT), towards the so called Smart Grid. However, while the Smart Grid design strategies have been studied by academia, only anecdotal guidance is provided to the industry with respect to increasing the level of grid intelligence. In this paper, we report on a successful project in assisting the industry in this way, via conducting a large anomaly-detection study on the data of one of the power distribution companies in the Czech Republic. In the study, we move away from the concept of single events identified as anomaly to the concept of collective anomaly, that is itemsets of events that may be anomalous based on their patterns of appearance. This can assist the operators of the distribution system in the transformation of their grid to a smarter grid.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2016)
ISBN
9781509018970
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
2313-2318
Název nakladatele
IEEE
Místo vydání
Budapest
Místo konání akce
Budapest
Datum konání akce
9. 10. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—