Directed elimination games
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F16%3A00094247" target="_blank" >RIV/00216224:14330/16:00094247 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.dam.2014.08.030" target="_blank" >http://dx.doi.org/10.1016/j.dam.2014.08.030</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dam.2014.08.030" target="_blank" >10.1016/j.dam.2014.08.030</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Directed elimination games
Popis výsledku v původním jazyce
While tools from structural graph theory such as tree- or path-width have proved to be highly successful in coping with computational intractability on undirected graphs, corresponding width measures for directed graphs have not yet fulfilled their promise for broad algorithmic applications on directed graphs. One reason for this is that in most existing digraph width measures the class of acyclic digraphs has small width which immediately implies hardness of problems such as computing directed dominating sets. Fernau and Meister (2014) introduce the concept of elimination width and a corresponding graph searching game which overcomes this problem with acyclic digraphs. In their paper, the focus was on structural characterizations of classes of digraphs of bounded elimination width. In this paper we study elimination width from an algorithmic and graph searching perspective.
Název v anglickém jazyce
Directed elimination games
Popis výsledku anglicky
While tools from structural graph theory such as tree- or path-width have proved to be highly successful in coping with computational intractability on undirected graphs, corresponding width measures for directed graphs have not yet fulfilled their promise for broad algorithmic applications on directed graphs. One reason for this is that in most existing digraph width measures the class of acyclic digraphs has small width which immediately implies hardness of problems such as computing directed dominating sets. Fernau and Meister (2014) introduce the concept of elimination width and a corresponding graph searching game which overcomes this problem with acyclic digraphs. In their paper, the focus was on structural characterizations of classes of digraphs of bounded elimination width. In this paper we study elimination width from an algorithmic and graph searching perspective.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete Applied Mathematics
ISSN
0166-218X
e-ISSN
—
Svazek periodika
199
Číslo periodika v rámci svazku
C
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
187-198
Kód UT WoS článku
000368045700014
EID výsledku v databázi Scopus
—