Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The Efficient Randomness Testing using Boolean Functions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F17%3A00095141" target="_blank" >RIV/00216224:14330/17:00095141 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://crocs.fi.muni.cz/public/papers/secrypt2017" target="_blank" >https://crocs.fi.muni.cz/public/papers/secrypt2017</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5220/0006425100920103" target="_blank" >10.5220/0006425100920103</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The Efficient Randomness Testing using Boolean Functions

  • Popis výsledku v původním jazyce

    The wide range of security applications requires data either truly random or indistinguishable from the random. The statistical tests included in batteries like NIST STS or Dieharder are frequently used to assess this randomness property. We designed principally simple, yet powerful statistical randomness test working on the bit level and based on a search for boolean function(s) exhibiting bias not expected for truly random data when applied to the tested stream. The deviances are detected in seconds rather than tens of minutes required by the common batteries. Importantly, the boolean function exhibiting the bias directly describes the pattern responsible for this bias - allowing for construction of bit predictor or fixing the cause of bias in tested function design. The present bias is frequently detected in at least order of magnitude less data than required for NIST STS or Dieharder showing that the tests included in these batteries are either too simple to spot the common biases (like Monobit test) or overly complex (like Fourier Transform test) which requires an extensive amount of data. The proposed approach called BoolTest fills this gap. The performance was verified on more than 20 real world cryptographic functions – block and stream ciphers, hash functions and pseudorandom generators. Among others, the previously unknown bias in output of C rand() and Java Random generators which can be utilized as practical distinguisher was found.

  • Název v anglickém jazyce

    The Efficient Randomness Testing using Boolean Functions

  • Popis výsledku anglicky

    The wide range of security applications requires data either truly random or indistinguishable from the random. The statistical tests included in batteries like NIST STS or Dieharder are frequently used to assess this randomness property. We designed principally simple, yet powerful statistical randomness test working on the bit level and based on a search for boolean function(s) exhibiting bias not expected for truly random data when applied to the tested stream. The deviances are detected in seconds rather than tens of minutes required by the common batteries. Importantly, the boolean function exhibiting the bias directly describes the pattern responsible for this bias - allowing for construction of bit predictor or fixing the cause of bias in tested function design. The present bias is frequently detected in at least order of magnitude less data than required for NIST STS or Dieharder showing that the tests included in these batteries are either too simple to spot the common biases (like Monobit test) or overly complex (like Fourier Transform test) which requires an extensive amount of data. The proposed approach called BoolTest fills this gap. The performance was verified on more than 20 real world cryptographic functions – block and stream ciphers, hash functions and pseudorandom generators. Among others, the previously unknown bias in output of C rand() and Java Random generators which can be utilized as practical distinguisher was found.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA16-08565S" target="_blank" >GA16-08565S: Rozvoj kryptoanalytických metod prostřednictvím evolučních výpočtů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 14th International Joint Conference on e-Business and Telecommunications (ICETE 2017) - Volume 4: SECRYPT, Madrid, Spain, July 24-26, 2017

  • ISBN

    9789897582592

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    12

  • Strana od-do

    92-103

  • Název nakladatele

    SCITEPRESS

  • Místo vydání

    Madrid, Spain

  • Místo konání akce

    Madrid, Spain

  • Datum konání akce

    24. 7. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku