You Are How You Walk: Uncooperative MoCap Gait Identification for Video Surveillance with Incomplete and Noisy Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F17%3A00097675" target="_blank" >RIV/00216224:14330/17:00097675 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/document/8272700/" target="_blank" >http://ieeexplore.ieee.org/document/8272700/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/BTAS.2017.8272700" target="_blank" >10.1109/BTAS.2017.8272700</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
You Are How You Walk: Uncooperative MoCap Gait Identification for Video Surveillance with Incomplete and Noisy Data
Popis výsledku v původním jazyce
This work offers a design of a video surveillance system based on a soft biometric -- gait identification from MoCap data. The main focus is on two substantial issues of the video surveillance scenario: (1) the walkers do not cooperate in providing learning data to establish their identities and (2) the data are often noisy or incomplete. We show that only a few examples of human gait cycles are required to learn a projection of raw MoCap data onto a low-dimensional sub-space where the identities are well separable. Latent features learned by Maximum Margin Criterion (MMC) method discriminate better than any collection of geometric features. The MMC method is also highly robust to noisy data and works properly even with only a fraction of joints tracked. The overall workflow of the design is directly applicable for a day-to-day operation based on the available MoCap technology and algorithms for gait analysis. In the concept we introduce, a walker's identity is represented by a cluster of gait data collected at their incidents within the surveillance system: They are how they walk.
Název v anglickém jazyce
You Are How You Walk: Uncooperative MoCap Gait Identification for Video Surveillance with Incomplete and Noisy Data
Popis výsledku anglicky
This work offers a design of a video surveillance system based on a soft biometric -- gait identification from MoCap data. The main focus is on two substantial issues of the video surveillance scenario: (1) the walkers do not cooperate in providing learning data to establish their identities and (2) the data are often noisy or incomplete. We show that only a few examples of human gait cycles are required to learn a projection of raw MoCap data onto a low-dimensional sub-space where the identities are well separable. Latent features learned by Maximum Margin Criterion (MMC) method discriminate better than any collection of geometric features. The MMC method is also highly robust to noisy data and works properly even with only a fraction of joints tracked. The overall workflow of the design is directly applicable for a day-to-day operation based on the available MoCap technology and algorithms for gait analysis. In the concept we introduce, a walker's identity is represented by a cluster of gait data collected at their incidents within the surveillance system: They are how they walk.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 3rd IEEE/IAPR International Joint Conference on Biometrics (IJCB 2017)
ISBN
9781538611241
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
208-215
Název nakladatele
IEEE
Místo vydání
USA
Místo konání akce
Denver, USA
Datum konání akce
1. 1. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000426973200026