Backdoor Treewidth for SAT
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F17%3A00100551" target="_blank" >RIV/00216224:14330/17:00100551 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-319-66263-3_2" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-66263-3_2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-66263-3_2" target="_blank" >10.1007/978-3-319-66263-3_2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Backdoor Treewidth for SAT
Popis výsledku v původním jazyce
A strong backdoor in a CNF formula is a set of variables such that each possible instantiation of these variables moves the formula into a tractable class. The algorithmic problem of finding a strong backdoor has been the subject of intensive study, mostly within the parameterized complexity framework. Results to date focused primarily on backdoors of small size. In this paper we propose a new approach for algorithmically exploiting strong backdoors for SAT: instead of focusing on small backdoors, we focus on backdoors with certain structural properties. In particular, we consider backdoors that have a certain tree-like structure, formally captured by the notion of backdoor treewidth. First, we provide a fixed-parameter algorithm for SAT parameterized by the backdoor treewidth w.r.t. the fundamental tractable classes Horn, Anti-Horn, and 2CNF. Second, we consider the more general setting where the backdoor decomposes the instance into components belonging to different tractable classes, albeit focusing on backdoors of treewidth 1 (i.e., acyclic backdoors). We give polynomial-time algorithms for SAT and #SAT for instances that admit such an acyclic backdoor.
Název v anglickém jazyce
Backdoor Treewidth for SAT
Popis výsledku anglicky
A strong backdoor in a CNF formula is a set of variables such that each possible instantiation of these variables moves the formula into a tractable class. The algorithmic problem of finding a strong backdoor has been the subject of intensive study, mostly within the parameterized complexity framework. Results to date focused primarily on backdoors of small size. In this paper we propose a new approach for algorithmically exploiting strong backdoors for SAT: instead of focusing on small backdoors, we focus on backdoors with certain structural properties. In particular, we consider backdoors that have a certain tree-like structure, formally captured by the notion of backdoor treewidth. First, we provide a fixed-parameter algorithm for SAT parameterized by the backdoor treewidth w.r.t. the fundamental tractable classes Horn, Anti-Horn, and 2CNF. Second, we consider the more general setting where the backdoor decomposes the instance into components belonging to different tractable classes, albeit focusing on backdoors of treewidth 1 (i.e., acyclic backdoors). We give polynomial-time algorithms for SAT and #SAT for instances that admit such an acyclic backdoor.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Theory and Applications of Satisfiability Testing - SAT 2017 - 20th International Conference, Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings
ISBN
9783319662626
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
18
Strana od-do
20-37
Název nakladatele
Springer
Místo vydání
Nemecko
Místo konání akce
Melbourne, Australia
Datum konání akce
1. 1. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000455337600002