Time-space complexity advantages for quantum computing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F17%3A00100568" target="_blank" >RIV/00216224:14330/17:00100568 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-71069-3_24" target="_blank" >http://dx.doi.org/10.1007/978-3-319-71069-3_24</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-71069-3_24" target="_blank" >10.1007/978-3-319-71069-3_24</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Time-space complexity advantages for quantum computing
Popis výsledku v původním jazyce
It has been proved that quantum computing has advantages in query complexity, communication complexity and also other computing models. However, it is hard to prove strictly that quantum computing has advantage in the Turing machine models in time complexity. For example, we do not know how to prove that Shor’s algorithm is strictly better than any classical algorithm, since we do not know the lower bound of time complexity of the factoring problem in Turing machine. In this paper, we consider the time-space complexity and prove strictly that quantum computing has advantages compared to their classical counterparts. We prove: (1) a time-space upper bound for recognition of the languages LI N T(n) on two-way finite automata with quantum and classical states (2QCFA): TS= O(n3/2log n), whereas a lower bound on probabilistic Turing machine is TS= Omega(n2); (2) a time-space upper bound for recognition of the languages LN E(n) on exact 2QCFA: TS= O(n1.87log n), whereas a lower bound on probabilistic Turing machine is TS= Omega(n2). It has been proved (Klauck, STOC’00) that the exact one-way quantum finite automata have no advantage comparing to classical finite automata in recognizing languages. However, the result (2) shows that the exact 2QCFA do have an advantage in comparison with their classical counterparts, which is the first example showing that the exact quantum computing has advantage in time-space complexity comparing to classical computing.
Název v anglickém jazyce
Time-space complexity advantages for quantum computing
Popis výsledku anglicky
It has been proved that quantum computing has advantages in query complexity, communication complexity and also other computing models. However, it is hard to prove strictly that quantum computing has advantage in the Turing machine models in time complexity. For example, we do not know how to prove that Shor’s algorithm is strictly better than any classical algorithm, since we do not know the lower bound of time complexity of the factoring problem in Turing machine. In this paper, we consider the time-space complexity and prove strictly that quantum computing has advantages compared to their classical counterparts. We prove: (1) a time-space upper bound for recognition of the languages LI N T(n) on two-way finite automata with quantum and classical states (2QCFA): TS= O(n3/2log n), whereas a lower bound on probabilistic Turing machine is TS= Omega(n2); (2) a time-space upper bound for recognition of the languages LN E(n) on exact 2QCFA: TS= O(n1.87log n), whereas a lower bound on probabilistic Turing machine is TS= Omega(n2). It has been proved (Klauck, STOC’00) that the exact one-way quantum finite automata have no advantage comparing to classical finite automata in recognizing languages. However, the result (2) shows that the exact 2QCFA do have an advantage in comparison with their classical counterparts, which is the first example showing that the exact quantum computing has advantage in time-space complexity comparing to classical computing.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science, Volume 10687: 6th International Conference on Theory and Practice of Natural Computing, TPNC 2017
ISBN
9783319710686
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
13
Strana od-do
305-317
Název nakladatele
Springer
Místo vydání
Cham, Switzerland
Místo konání akce
Praha
Datum konání akce
1. 1. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000450354700024