Effective and Efficient Similarity Searching in Motion Capture Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00100703" target="_blank" >RIV/00216224:14330/18:00100703 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s11042-017-4859-7" target="_blank" >http://dx.doi.org/10.1007/s11042-017-4859-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11042-017-4859-7" target="_blank" >10.1007/s11042-017-4859-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effective and Efficient Similarity Searching in Motion Capture Data
Popis výsledku v původním jazyce
Motion capture data describe human movements in the form of spatio-temporal trajectories of skeleton joints. Intelligent management of such complex data is a challenging task for computers which requires an effective concept of motion similarity. However, evaluating the pair-wise similarity is a difficult problem as a single action can be performed by various actors in different ways, speeds or starting positions. Recent methods usually model the motion similarity by comparing customized features using distance-based functions or specialized machine-learning classifiers. By combining both these approaches, we transform the problem of comparing motions of variable sizes into the problem of comparing fixed-size vectors. Specifically, each rather-short motion is encoded into a compact visual representation from which a highly descriptive 4,096-dimensional feature vector is extracted using a fine-tuned deep convolutional neural network. The advantage is that the fixed-size features are compared by the Euclidean distance which enables efficient motion indexing by any metric-based index structure. Another advantage of the proposed approach is its tolerance towards an imprecise action segmentation, the variance in movement speed, and a lower data quality. All these properties together bring new possibilities for effective and efficient large-scale retrieval.
Název v anglickém jazyce
Effective and Efficient Similarity Searching in Motion Capture Data
Popis výsledku anglicky
Motion capture data describe human movements in the form of spatio-temporal trajectories of skeleton joints. Intelligent management of such complex data is a challenging task for computers which requires an effective concept of motion similarity. However, evaluating the pair-wise similarity is a difficult problem as a single action can be performed by various actors in different ways, speeds or starting positions. Recent methods usually model the motion similarity by comparing customized features using distance-based functions or specialized machine-learning classifiers. By combining both these approaches, we transform the problem of comparing motions of variable sizes into the problem of comparing fixed-size vectors. Specifically, each rather-short motion is encoded into a compact visual representation from which a highly descriptive 4,096-dimensional feature vector is extracted using a fine-tuned deep convolutional neural network. The advantage is that the fixed-size features are compared by the Euclidean distance which enables efficient motion indexing by any metric-based index structure. Another advantage of the proposed approach is its tolerance towards an imprecise action segmentation, the variance in movement speed, and a lower data quality. All these properties together bring new possibilities for effective and efficient large-scale retrieval.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Centrum pro multi-modální interpretaci dat velkého rozsahu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Multimedia Tools and Applications
ISSN
1380-7501
e-ISSN
1573-7721
Svazek periodika
77
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
12073-12094
Kód UT WoS článku
000433202100021
EID výsledku v databázi Scopus
2-s2.0-85019711344