Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Effective and Efficient Similarity Searching in Motion Capture Data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00100703" target="_blank" >RIV/00216224:14330/18:00100703 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/s11042-017-4859-7" target="_blank" >http://dx.doi.org/10.1007/s11042-017-4859-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11042-017-4859-7" target="_blank" >10.1007/s11042-017-4859-7</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Effective and Efficient Similarity Searching in Motion Capture Data

  • Popis výsledku v původním jazyce

    Motion capture data describe human movements in the form of spatio-temporal trajectories of skeleton joints. Intelligent management of such complex data is a challenging task for computers which requires an effective concept of motion similarity. However, evaluating the pair-wise similarity is a difficult problem as a single action can be performed by various actors in different ways, speeds or starting positions. Recent methods usually model the motion similarity by comparing customized features using distance-based functions or specialized machine-learning classifiers. By combining both these approaches, we transform the problem of comparing motions of variable sizes into the problem of comparing fixed-size vectors. Specifically, each rather-short motion is encoded into a compact visual representation from which a highly descriptive 4,096-dimensional feature vector is extracted using a fine-tuned deep convolutional neural network. The advantage is that the fixed-size features are compared by the Euclidean distance which enables efficient motion indexing by any metric-based index structure. Another advantage of the proposed approach is its tolerance towards an imprecise action segmentation, the variance in movement speed, and a lower data quality. All these properties together bring new possibilities for effective and efficient large-scale retrieval.

  • Název v anglickém jazyce

    Effective and Efficient Similarity Searching in Motion Capture Data

  • Popis výsledku anglicky

    Motion capture data describe human movements in the form of spatio-temporal trajectories of skeleton joints. Intelligent management of such complex data is a challenging task for computers which requires an effective concept of motion similarity. However, evaluating the pair-wise similarity is a difficult problem as a single action can be performed by various actors in different ways, speeds or starting positions. Recent methods usually model the motion similarity by comparing customized features using distance-based functions or specialized machine-learning classifiers. By combining both these approaches, we transform the problem of comparing motions of variable sizes into the problem of comparing fixed-size vectors. Specifically, each rather-short motion is encoded into a compact visual representation from which a highly descriptive 4,096-dimensional feature vector is extracted using a fine-tuned deep convolutional neural network. The advantage is that the fixed-size features are compared by the Euclidean distance which enables efficient motion indexing by any metric-based index structure. Another advantage of the proposed approach is its tolerance towards an imprecise action segmentation, the variance in movement speed, and a lower data quality. All these properties together bring new possibilities for effective and efficient large-scale retrieval.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Centrum pro multi-modální interpretaci dat velkého rozsahu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Multimedia Tools and Applications

  • ISSN

    1380-7501

  • e-ISSN

    1573-7721

  • Svazek periodika

    77

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    22

  • Strana od-do

    12073-12094

  • Kód UT WoS článku

    000433202100021

  • EID výsledku v databázi Scopus

    2-s2.0-85019711344