Sentence and Word Embedding Employed in Open Question-Answering
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00100739" target="_blank" >RIV/00216224:14330/18:00100739 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sentence and Word Embedding Employed in Open Question-Answering
Popis výsledku v původním jazyce
The Automatic Question Answering, or AQA, system is a representative of open domain QA systems, where the answer selection process leans on syntactic and semantic similarities between the question and the answering text snippets. Such approach is specifically oriented to languages with fine grained syntactic and morphologic features that help to guide the correct QA match. In this paper, we present the latest results of the AQA system with new word embedding criteria implementation. All AQA processing steps (question processing, answer selection and answer extraction) are syntax-based with advanced scoring obtained by a combination of several similarity criteria (TF-IDF, tree distance, ...). Adding the word embedding parameters helped to resolve the QA match in cases, where the answer is expressed by semantically near equivalents. We describe the design and implementation of the whole QA process and provide a new evaluation of the AQA system with the word embedding criteria measured with an expanded version of Simple Question-Answering Database, or SQAD, with more than 3000 question-answer pairs extracted from the Czech Wikipedia.
Název v anglickém jazyce
Sentence and Word Embedding Employed in Open Question-Answering
Popis výsledku anglicky
The Automatic Question Answering, or AQA, system is a representative of open domain QA systems, where the answer selection process leans on syntactic and semantic similarities between the question and the answering text snippets. Such approach is specifically oriented to languages with fine grained syntactic and morphologic features that help to guide the correct QA match. In this paper, we present the latest results of the AQA system with new word embedding criteria implementation. All AQA processing steps (question processing, answer selection and answer extraction) are syntax-based with advanced scoring obtained by a combination of several similarity criteria (TF-IDF, tree distance, ...). Adding the word embedding parameters helped to resolve the QA match in cases, where the answer is expressed by semantically near equivalents. We describe the design and implementation of the whole QA process and provide a new evaluation of the AQA system with the word embedding criteria measured with an expanded version of Simple Question-Answering Database, or SQAD, with more than 3000 question-answer pairs extracted from the Czech Wikipedia.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
60200 - Languages and Literature
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-13277S" target="_blank" >GA15-13277S: Hyperintensionální logika pro analýzu přirozeného jazyka</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 10th International Conference on Agents and Artificial Intelligence (ICAART 2018)
ISBN
9789897582752
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
486-492
Název nakladatele
SCITEPRESS - Science and Technology Publications
Místo vydání
Setúbal, Portugal
Místo konání akce
Funchal, Madeira, Portugal
Datum konání akce
16. 1. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—