Efficient Algorithms for Asymptotic Bounds on Termination Time in VASS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00100882" target="_blank" >RIV/00216224:14330/18:00100882 - isvavai.cz</a>
Výsledek na webu
<a href="http://doi.acm.org/10.1145/3209108.3209191" target="_blank" >http://doi.acm.org/10.1145/3209108.3209191</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3209108.3209191" target="_blank" >10.1145/3209108.3209191</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient Algorithms for Asymptotic Bounds on Termination Time in VASS
Popis výsledku v původním jazyce
Vector Addition Systems with States (VASS) provide a well-known and fundamental model for the analysis of concurrent processes, parametrized systems, and are also used as abstract models of programs in resource bound analysis. In this paper we study the problem of obtaining asymptotic bounds on the termination time of a given VASS. In particular, we focus on the practically important case of obtaining polynomial bounds on termination time. Our main contributions are as follows: First, we present a polynomial-time algorithm for deciding whether a given VASS has a linear asymptotic complexity. We also show that if the complexity of a VASS is not linear, it is at least quadratic. Second, we classify VASS according to quantitative properties of their cycles. We show that certain singularities in these properties are the key reason for non-polynomial asymptotic complexity of VASS. In absence of singularities, we show that the asymptotic complexity is always polynomial and of the form Theta(n^k), for some integer kleq d, where $d$ is the dimension of the VASS. We present a polynomial-time algorithm computing the optimal $k$. For general VASS, the same algorithm, which is based on a complete technique for the construction of ranking functions in VASS, produces a valid lower bound, i.e. a k such that the termination complexity is Omega(n^k). Our results are based on new insights into the geometry of VASS dynamics, which hold the potential for further applicability to VASS analysis.
Název v anglickém jazyce
Efficient Algorithms for Asymptotic Bounds on Termination Time in VASS
Popis výsledku anglicky
Vector Addition Systems with States (VASS) provide a well-known and fundamental model for the analysis of concurrent processes, parametrized systems, and are also used as abstract models of programs in resource bound analysis. In this paper we study the problem of obtaining asymptotic bounds on the termination time of a given VASS. In particular, we focus on the practically important case of obtaining polynomial bounds on termination time. Our main contributions are as follows: First, we present a polynomial-time algorithm for deciding whether a given VASS has a linear asymptotic complexity. We also show that if the complexity of a VASS is not linear, it is at least quadratic. Second, we classify VASS according to quantitative properties of their cycles. We show that certain singularities in these properties are the key reason for non-polynomial asymptotic complexity of VASS. In absence of singularities, we show that the asymptotic complexity is always polynomial and of the form Theta(n^k), for some integer kleq d, where $d$ is the dimension of the VASS. We present a polynomial-time algorithm computing the optimal $k$. For general VASS, the same algorithm, which is based on a complete technique for the construction of ranking functions in VASS, produces a valid lower bound, i.e. a k such that the termination complexity is Omega(n^k). Our results are based on new insights into the geometry of VASS dynamics, which hold the potential for further applicability to VASS analysis.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-11193S" target="_blank" >GA18-11193S: Algoritmy pro diskrétní systémy a hry s nekonečně mnoha stavy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2018 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)
ISBN
9781450355834
ISSN
1043-6871
e-ISSN
—
Počet stran výsledku
10
Strana od-do
185-194
Název nakladatele
ACM
Místo vydání
Oxford, England
Místo konání akce
Oxford, England
Datum konání akce
9. 7. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—