Probabilistic Classification of Skeleton Sequences
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00100948" target="_blank" >RIV/00216224:14330/18:00100948 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-98812-2_4" target="_blank" >http://dx.doi.org/10.1007/978-3-319-98812-2_4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-98812-2_4" target="_blank" >10.1007/978-3-319-98812-2_4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Probabilistic Classification of Skeleton Sequences
Popis výsledku v původním jazyce
Automatic classification of 3D skeleton sequences of human motions has applications in many domains, ranging from entertainment to medicine. The classification is a difficult problem as the motions belonging to the same class needn't be well segmented and can be performed by subjects of various body sizes in different styles and speeds. The state-of-the-art recognition approaches commonly solve this problem by training recurrent neural networks to learn the contextual dependency in both spatial and temporal domains. In this paper, we employ a distance-based similarity measure, based on deep convolutional features, to search for the k-nearest motions with respect to a query motion being classified. The retrieved neighbors are analyzed and re-ranked by additional measures that are automatically chosen for individual queries. The combination of deep features, dynamism in the similarity-measure selection, and a new kNN classifier brings the highest classification accuracy on a challenging dataset with 130 classes. Moreover, the proposed approach can promptly react to changing training data without any need for a retraining process.
Název v anglickém jazyce
Probabilistic Classification of Skeleton Sequences
Popis výsledku anglicky
Automatic classification of 3D skeleton sequences of human motions has applications in many domains, ranging from entertainment to medicine. The classification is a difficult problem as the motions belonging to the same class needn't be well segmented and can be performed by subjects of various body sizes in different styles and speeds. The state-of-the-art recognition approaches commonly solve this problem by training recurrent neural networks to learn the contextual dependency in both spatial and temporal domains. In this paper, we employ a distance-based similarity measure, based on deep convolutional features, to search for the k-nearest motions with respect to a query motion being classified. The retrieved neighbors are analyzed and re-ranked by additional measures that are automatically chosen for individual queries. The combination of deep features, dynamism in the similarity-measure selection, and a new kNN classifier brings the highest classification accuracy on a challenging dataset with 130 classes. Moreover, the proposed approach can promptly react to changing training data without any need for a retraining process.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Centrum pro multi-modální interpretaci dat velkého rozsahu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
29th International Conference on Database and Expert Systems Applications (DEXA 2018)
ISBN
9783319988115
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
16
Strana od-do
50-65
Název nakladatele
Springer
Místo vydání
Switzerland
Místo konání akce
Regensburg, Germany
Datum konání akce
1. 1. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000460551600004