A Generalized Evaluation Framework for Multimedia Recommender Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00103876" target="_blank" >RIV/00216224:14330/18:00103876 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1142/S1793351X18500046" target="_blank" >http://dx.doi.org/10.1142/S1793351X18500046</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S1793351X18500046" target="_blank" >10.1142/S1793351X18500046</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Generalized Evaluation Framework for Multimedia Recommender Systems
Popis výsledku v původním jazyce
With the widespread availability of media technologies, such as real-time streaming, new Internet-of-Thing devices and smart phones, multimedia data are extensively increased and the big multimedia data rapidly spread over various social networks. This has created complexity and information overload for users to choose the suitable multimedia objects. Thus, different multimedia recommender systems have been emerging to help users find the useful multimedia objects that are possibly preferred by the user. However, the evaluation of these multimedia recommender systems is still in an ad-hoc stage. Given the distinct features of multimedia objects, the evaluation criteria adopted from the general recommender systems might not be effectively used to evaluate multimedia recommendations. In this paper, we therefore review and analyze the evaluation criteria that have been used in the previous multimedia recommender system papers. Based on the review, we propose a generalized evaluation framework to guide the researchers and practitioners to perform evaluations, especially user-centric evaluations, for multimedia recommender systems.
Název v anglickém jazyce
A Generalized Evaluation Framework for Multimedia Recommender Systems
Popis výsledku anglicky
With the widespread availability of media technologies, such as real-time streaming, new Internet-of-Thing devices and smart phones, multimedia data are extensively increased and the big multimedia data rapidly spread over various social networks. This has created complexity and information overload for users to choose the suitable multimedia objects. Thus, different multimedia recommender systems have been emerging to help users find the useful multimedia objects that are possibly preferred by the user. However, the evaluation of these multimedia recommender systems is still in an ad-hoc stage. Given the distinct features of multimedia objects, the evaluation criteria adopted from the general recommender systems might not be effectively used to evaluate multimedia recommendations. In this paper, we therefore review and analyze the evaluation criteria that have been used in the previous multimedia recommender system papers. Based on the review, we propose a generalized evaluation framework to guide the researchers and practitioners to perform evaluations, especially user-centric evaluations, for multimedia recommender systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Semantic Computing
ISSN
1793-351X
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
541-557
Kód UT WoS článku
000453524500005
EID výsledku v databázi Scopus
2-s2.0-85058781460