Evaluation of Domain Agnostic Approaches for Enumeration of Minimal Unsatisfiable Subsets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00104038" target="_blank" >RIV/00216224:14330/18:00104038 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.29007/sxzb" target="_blank" >http://dx.doi.org/10.29007/sxzb</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.29007/sxzb" target="_blank" >10.29007/sxzb</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation of Domain Agnostic Approaches for Enumeration of Minimal Unsatisfiable Subsets
Popis výsledku v původním jazyce
In many different applications we are given a set of constraints with the goal to decide whether the set is satisfiable. If the set is determined to be unsatisfiable, one might be interested in analysing this unsatisfiability. Identification of minimal unsatisfiable subsets (MUSes) is a kind of such analysis. The more MUSes are identified, the better insight into the unsatisfiability is obtained. However, the full enumeration of all MUSes is often intractable. Therefore, algorithms that identify MUSes in an online fashion, i.e., one by one, are needed. Moreover, since MUSes find applications in various constraint domains, and new applications still arise, there is a desire for domain agnostic MUS enumeration approaches. In this paper, we present an experimental evaluation of four state-of-the-art domain agnostic MUS enumeration algorithms: MARCO, TOME, ReMUS, and DAA. The evaluation is conducted in the SAT, SMT, and LTL constraint domains. The results evidence that there is no silver-bullet algorithm that would beat all the others in all the domains.
Název v anglickém jazyce
Evaluation of Domain Agnostic Approaches for Enumeration of Minimal Unsatisfiable Subsets
Popis výsledku anglicky
In many different applications we are given a set of constraints with the goal to decide whether the set is satisfiable. If the set is determined to be unsatisfiable, one might be interested in analysing this unsatisfiability. Identification of minimal unsatisfiable subsets (MUSes) is a kind of such analysis. The more MUSes are identified, the better insight into the unsatisfiability is obtained. However, the full enumeration of all MUSes is often intractable. Therefore, algorithms that identify MUSes in an online fashion, i.e., one by one, are needed. Moreover, since MUSes find applications in various constraint domains, and new applications still arise, there is a desire for domain agnostic MUS enumeration approaches. In this paper, we present an experimental evaluation of four state-of-the-art domain agnostic MUS enumeration algorithms: MARCO, TOME, ReMUS, and DAA. The evaluation is conducted in the SAT, SMT, and LTL constraint domains. The results evidence that there is no silver-bullet algorithm that would beat all the others in all the domains.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
LPAR-22, 22nd International Conference on Logic for Programming, Artificial Intelligence and Reasoning
ISBN
—
ISSN
2398-7340
e-ISSN
—
Počet stran výsledku
12
Strana od-do
131-142
Název nakladatele
EPiC Series in Computing
Místo vydání
Awassa, Etiopie
Místo konání akce
Awassa, Etiopie
Datum konání akce
1. 1. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—