Finitely forcible graph limits are universal
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00106842" target="_blank" >RIV/00216224:14330/18:00106842 - isvavai.cz</a>
Výsledek na webu
<a href="https://arxiv.org/abs/1701.03846" target="_blank" >https://arxiv.org/abs/1701.03846</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aim.2018.10.019" target="_blank" >10.1016/j.aim.2018.10.019</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Finitely forcible graph limits are universal
Popis výsledku v původním jazyce
The theory of graph limits represents large graphs by analytic objects called graphons. Graph limits determined by finitely many graph densities, which are represented by finitely forcible graphons, arise in various scenarios, particularly within extremal combinatorics. Lovasz and Szegedy conjectured that all such graphons possess a simple structure, e.g., the space of their typical vertices is always finite dimensional; this was disproved by several ad hoc constructions of complex finitely forcible graphons. We prove that any graphon is a subgraphon of a finitely forcible graphon. This dismisses any hope for a result showing that finitely forcible graphons possess a simple structure, and is surprising when contrasted with the fact that finitely forcible graphons form a meager set in the space of all graphons. In addition, since any finitely forcible graphon represents the unique minimizer of some linear combination of densities of subgraphs, our result also shows that such minimization problems, which conceptually are among the simplest kind within extremal graph theory, may in fact have unique optimal solutions with arbitrarily complex structure. (C) 2018 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
Finitely forcible graph limits are universal
Popis výsledku anglicky
The theory of graph limits represents large graphs by analytic objects called graphons. Graph limits determined by finitely many graph densities, which are represented by finitely forcible graphons, arise in various scenarios, particularly within extremal combinatorics. Lovasz and Szegedy conjectured that all such graphons possess a simple structure, e.g., the space of their typical vertices is always finite dimensional; this was disproved by several ad hoc constructions of complex finitely forcible graphons. We prove that any graphon is a subgraphon of a finitely forcible graphon. This dismisses any hope for a result showing that finitely forcible graphons possess a simple structure, and is surprising when contrasted with the fact that finitely forcible graphons form a meager set in the space of all graphons. In addition, since any finitely forcible graphon represents the unique minimizer of some linear combination of densities of subgraphs, our result also shows that such minimization problems, which conceptually are among the simplest kind within extremal graph theory, may in fact have unique optimal solutions with arbitrarily complex structure. (C) 2018 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Mathematics
ISSN
0001-8708
e-ISSN
—
Svazek periodika
340
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
36
Strana od-do
819-854
Kód UT WoS článku
000451363700020
EID výsledku v databázi Scopus
2-s2.0-85055086923