Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Learning-Based Mean-Payoff Optimization in an Unknown MDP under Omega-Regular Constraints

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00108291" target="_blank" >RIV/00216224:14330/18:00108291 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.8" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.8" target="_blank" >10.4230/LIPIcs.CONCUR.2018.8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Learning-Based Mean-Payoff Optimization in an Unknown MDP under Omega-Regular Constraints

  • Popis výsledku v původním jazyce

    We formalize the problem of maximizing the mean-payoff value with high probability while satisfying a parity objective in a Markov decision process (MDP) with unknown probabilistic transition function and unknown reward function. Assuming the support of the unknown transition function and a lower bound on the minimal transition probability are known in advance, we show that in MDPs consisting of a single end component, two combinations of guarantees on the parity and mean-payoff objectives can be achieved depending on how much memory one is willing to use. (i) For all epsilon and gamma we can construct an online-learning finite-memory strategy that almost-surely satisfies the parity objective and which achieves an epsilon-optimal mean payoff with probability at least 1 - gamma. (ii) Alternatively, for all epsilon and gamma there exists an online-learning infinite-memory strategy that satisfies the parity objective surely and which achieves an epsilon-optimal mean payoff with probability at least 1 - gamma. We extend the above results to MDPs consisting of more than one end component in a natural way. Finally, we show that the aforementioned guarantees are tight, i.e. there are MDPs for which stronger combinations of the guarantees cannot be ensured.

  • Název v anglickém jazyce

    Learning-Based Mean-Payoff Optimization in an Unknown MDP under Omega-Regular Constraints

  • Popis výsledku anglicky

    We formalize the problem of maximizing the mean-payoff value with high probability while satisfying a parity objective in a Markov decision process (MDP) with unknown probabilistic transition function and unknown reward function. Assuming the support of the unknown transition function and a lower bound on the minimal transition probability are known in advance, we show that in MDPs consisting of a single end component, two combinations of guarantees on the parity and mean-payoff objectives can be achieved depending on how much memory one is willing to use. (i) For all epsilon and gamma we can construct an online-learning finite-memory strategy that almost-surely satisfies the parity objective and which achieves an epsilon-optimal mean payoff with probability at least 1 - gamma. (ii) Alternatively, for all epsilon and gamma there exists an online-learning infinite-memory strategy that satisfies the parity objective surely and which achieves an epsilon-optimal mean payoff with probability at least 1 - gamma. We extend the above results to MDPs consisting of more than one end component in a natural way. Finally, we show that the aforementioned guarantees are tight, i.e. there are MDPs for which stronger combinations of the guarantees cannot be ensured.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-11193S" target="_blank" >GA18-11193S: Algoritmy pro diskrétní systémy a hry s nekonečně mnoha stavy</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    29th International Conference on Concurrency Theory (CONCUR 2018)

  • ISBN

    9783959770873

  • ISSN

    1868-8969

  • e-ISSN

  • Počet stran výsledku

    18

  • Strana od-do

    1-18

  • Název nakladatele

    Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik

  • Místo vydání

    Dagstuhl

  • Místo konání akce

    Dagstuhl

  • Datum konání akce

    1. 1. 2018

  • Typ akce podle státní příslušnosti

    CST - Celostátní akce

  • Kód UT WoS článku