Learning-Based Mean-Payoff Optimization in an Unknown MDP under Omega-Regular Constraints
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00108291" target="_blank" >RIV/00216224:14330/18:00108291 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.8" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.8" target="_blank" >10.4230/LIPIcs.CONCUR.2018.8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Learning-Based Mean-Payoff Optimization in an Unknown MDP under Omega-Regular Constraints
Popis výsledku v původním jazyce
We formalize the problem of maximizing the mean-payoff value with high probability while satisfying a parity objective in a Markov decision process (MDP) with unknown probabilistic transition function and unknown reward function. Assuming the support of the unknown transition function and a lower bound on the minimal transition probability are known in advance, we show that in MDPs consisting of a single end component, two combinations of guarantees on the parity and mean-payoff objectives can be achieved depending on how much memory one is willing to use. (i) For all epsilon and gamma we can construct an online-learning finite-memory strategy that almost-surely satisfies the parity objective and which achieves an epsilon-optimal mean payoff with probability at least 1 - gamma. (ii) Alternatively, for all epsilon and gamma there exists an online-learning infinite-memory strategy that satisfies the parity objective surely and which achieves an epsilon-optimal mean payoff with probability at least 1 - gamma. We extend the above results to MDPs consisting of more than one end component in a natural way. Finally, we show that the aforementioned guarantees are tight, i.e. there are MDPs for which stronger combinations of the guarantees cannot be ensured.
Název v anglickém jazyce
Learning-Based Mean-Payoff Optimization in an Unknown MDP under Omega-Regular Constraints
Popis výsledku anglicky
We formalize the problem of maximizing the mean-payoff value with high probability while satisfying a parity objective in a Markov decision process (MDP) with unknown probabilistic transition function and unknown reward function. Assuming the support of the unknown transition function and a lower bound on the minimal transition probability are known in advance, we show that in MDPs consisting of a single end component, two combinations of guarantees on the parity and mean-payoff objectives can be achieved depending on how much memory one is willing to use. (i) For all epsilon and gamma we can construct an online-learning finite-memory strategy that almost-surely satisfies the parity objective and which achieves an epsilon-optimal mean payoff with probability at least 1 - gamma. (ii) Alternatively, for all epsilon and gamma there exists an online-learning infinite-memory strategy that satisfies the parity objective surely and which achieves an epsilon-optimal mean payoff with probability at least 1 - gamma. We extend the above results to MDPs consisting of more than one end component in a natural way. Finally, we show that the aforementioned guarantees are tight, i.e. there are MDPs for which stronger combinations of the guarantees cannot be ensured.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-11193S" target="_blank" >GA18-11193S: Algoritmy pro diskrétní systémy a hry s nekonečně mnoha stavy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
29th International Conference on Concurrency Theory (CONCUR 2018)
ISBN
9783959770873
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
18
Strana od-do
1-18
Název nakladatele
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Místo vydání
Dagstuhl
Místo konání akce
Dagstuhl
Datum konání akce
1. 1. 2018
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
—