Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Secure Certification of Mixed Quantum States with Application to Two-Party Randomness Generation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00118583" target="_blank" >RIV/00216224:14330/18:00118583 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/978-3-030-03810-6_11" target="_blank" >http://dx.doi.org/10.1007/978-3-030-03810-6_11</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-03810-6_11" target="_blank" >10.1007/978-3-030-03810-6_11</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Secure Certification of Mixed Quantum States with Application to Two-Party Randomness Generation

  • Popis výsledku v původním jazyce

    We investigate sampling procedures that certify that an arbitrary quantum state on n subsystems is close to an ideal mixed state phi(circle times n) for a given reference state phi, up to errors on a few positions. This task makes no sense classically: it would correspond to certifying that a given bitstring was generated according to some desired probability distribution. However, in the quantum case, this is possible if one has access to a prover who can supply a purification of the mixed state. In this work, we introduce the concept of mixed-state certification, and we show that a natural sampling protocol offers secure certification in the presence of a possibly dishonest prover: if the verifier accepts then he can be almost certain that the state in question has been correctly prepared, up to a small number of errors. We then apply this result to two-party quantum coin-tossing. Given that strong coin tossing is impossible, it is natural to ask "how close can we get". This question has been well studied and is nowadays well understood from the perspective of the bias of individual coin tosses. We approach and answer this question from a different-and somewhat orthogonal-perspective, where we do not look at individual coin tosses but at the global entropy instead. We show how two distrusting parties can produce a common high-entropy source, where the entropy is an arbitrarily small fraction below the maximum.

  • Název v anglickém jazyce

    Secure Certification of Mixed Quantum States with Application to Two-Party Randomness Generation

  • Popis výsledku anglicky

    We investigate sampling procedures that certify that an arbitrary quantum state on n subsystems is close to an ideal mixed state phi(circle times n) for a given reference state phi, up to errors on a few positions. This task makes no sense classically: it would correspond to certifying that a given bitstring was generated according to some desired probability distribution. However, in the quantum case, this is possible if one has access to a prover who can supply a purification of the mixed state. In this work, we introduce the concept of mixed-state certification, and we show that a natural sampling protocol offers secure certification in the presence of a possibly dishonest prover: if the verifier accepts then he can be almost certain that the state in question has been correctly prepared, up to a small number of errors. We then apply this result to two-party quantum coin-tossing. Given that strong coin tossing is impossible, it is natural to ask "how close can we get". This question has been well studied and is nowadays well understood from the perspective of the bias of individual coin tosses. We approach and answer this question from a different-and somewhat orthogonal-perspective, where we do not look at individual coin tosses but at the global entropy instead. We show how two distrusting parties can produce a common high-entropy source, where the entropy is an arbitrarily small fraction below the maximum.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    16th International Theory of Cryptography Conference (TCC 2018)

  • ISBN

    9783030038090

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    33

  • Strana od-do

    282-314

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Cham

  • Datum konání akce

    1. 1. 2018

  • Typ akce podle státní příslušnosti

    CST - Celostátní akce

  • Kód UT WoS článku

    000594194600011