PROLEMus: A Proactive Learning-Based MAC Protocol Against PUEA and SSDF Attacks in Energy Constrained Cognitive Radio Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00107446" target="_blank" >RIV/00216224:14330/19:00107446 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/TCCN.2019.2913397" target="_blank" >http://dx.doi.org/10.1109/TCCN.2019.2913397</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TCCN.2019.2913397" target="_blank" >10.1109/TCCN.2019.2913397</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
PROLEMus: A Proactive Learning-Based MAC Protocol Against PUEA and SSDF Attacks in Energy Constrained Cognitive Radio Networks
Popis výsledku v původním jazyce
Malicious users can exploit vulnerabilities in Cognitive Radio Networks (CRNs) and cause heavy performance degradation by Denial of Service (DoS) attacks. During operation, Cognitive Radios (CRs) spend a considerable amount of time to identify idle (free) channels for transmission. In addition, CRs also need additional security mechanisms to prevent malicious attacks. Proactive Model Predictive Control (MPC) based medium access control (MAC) protocols for CRs can quicken the idle channel identification by predicting future states of channels in advance. This provides enough time for CRs to carry out other calculations like DoS attack detection. However, such external detection techniques use additional power that makes them inappropriate for energy constrained applications. As a solution, this paper proposes a proactive learning based MAC protocol (PROLEMus) that shows immunity to two prominent CR based DoS attacks, namely Primary User Emulation Attack (PUEA) and Spectrum Sensing Data Falsification (SSDF) attack, without any external detection mechanism. PROLEMus shows an average of 6:2%, 8:9% and 12:4% improvement in channel utilization, backoff rate and sensing delay, respectively, with low prediction errors ( 1:8%) saving 19:65% energy, when compared to recently proposed MAC protocols like ProMAC aided with additional DoS attack detection mechanism.
Název v anglickém jazyce
PROLEMus: A Proactive Learning-Based MAC Protocol Against PUEA and SSDF Attacks in Energy Constrained Cognitive Radio Networks
Popis výsledku anglicky
Malicious users can exploit vulnerabilities in Cognitive Radio Networks (CRNs) and cause heavy performance degradation by Denial of Service (DoS) attacks. During operation, Cognitive Radios (CRs) spend a considerable amount of time to identify idle (free) channels for transmission. In addition, CRs also need additional security mechanisms to prevent malicious attacks. Proactive Model Predictive Control (MPC) based medium access control (MAC) protocols for CRs can quicken the idle channel identification by predicting future states of channels in advance. This provides enough time for CRs to carry out other calculations like DoS attack detection. However, such external detection techniques use additional power that makes them inappropriate for energy constrained applications. As a solution, this paper proposes a proactive learning based MAC protocol (PROLEMus) that shows immunity to two prominent CR based DoS attacks, namely Primary User Emulation Attack (PUEA) and Spectrum Sensing Data Falsification (SSDF) attack, without any external detection mechanism. PROLEMus shows an average of 6:2%, 8:9% and 12:4% improvement in channel utilization, backoff rate and sensing delay, respectively, with low prediction errors ( 1:8%) saving 19:65% energy, when compared to recently proposed MAC protocols like ProMAC aided with additional DoS attack detection mechanism.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Cognitive Communications and Networking
ISSN
2332-7731
e-ISSN
2332-7731
Svazek periodika
5
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
400-412
Kód UT WoS článku
000471115000017
EID výsledku v databázi Scopus
—