Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On the Complexity of Value Iteration

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00107669" target="_blank" >RIV/00216224:14330/19:00107669 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.102" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.102</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.102" target="_blank" >10.4230/LIPIcs.ICALP.2019.102</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On the Complexity of Value Iteration

  • Popis výsledku v původním jazyce

    Value iteration is a fundamental algorithm for solving Markov Decision Processes (MDPs). It computes the maximal n-step payoff by iterating n times a recurrence equation which is naturally associated to the MDP. At the same time, value iteration provides a policy for the MDP that is optimal on a given finite horizon n. In this paper, we settle the computational complexity of value iteration. We show that, given a horizon n in binary and an MDP, computing an optimal policy is EXPTIME-complete, thus resolving an open problem that goes back to the seminal 1987 paper on the complexity of MDPs by Papadimitriou and Tsitsiklis. To obtain this main result, we develop several stepping stones that yield results of an independent interest. For instance, we show that it is EXPTIME-complete to compute the n-fold iteration (with n in binary) of a function given by a straight-line program over the integers with max and + as operators. We also provide new complexity results for the bounded halting problem in linear-update counter machines.

  • Název v anglickém jazyce

    On the Complexity of Value Iteration

  • Popis výsledku anglicky

    Value iteration is a fundamental algorithm for solving Markov Decision Processes (MDPs). It computes the maximal n-step payoff by iterating n times a recurrence equation which is naturally associated to the MDP. At the same time, value iteration provides a policy for the MDP that is optimal on a given finite horizon n. In this paper, we settle the computational complexity of value iteration. We show that, given a horizon n in binary and an MDP, computing an optimal policy is EXPTIME-complete, thus resolving an open problem that goes back to the seminal 1987 paper on the complexity of MDPs by Papadimitriou and Tsitsiklis. To obtain this main result, we develop several stepping stones that yield results of an independent interest. For instance, we show that it is EXPTIME-complete to compute the n-fold iteration (with n in binary) of a function given by a straight-line program over the integers with max and + as operators. We also provide new complexity results for the bounded halting problem in linear-update counter machines.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ19-15134Y" target="_blank" >GJ19-15134Y: Verifikace a analýza pravděpodobnostních programů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)

  • ISBN

    9783959771092

  • ISSN

    1868-8969

  • e-ISSN

  • Počet stran výsledku

    15

  • Strana od-do

    „102:1“-„102:15“

  • Název nakladatele

    Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik

  • Místo vydání

    Dagstuhl, Germany

  • Místo konání akce

    Patras, Řecko

  • Datum konání akce

    1. 1. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku