Understanding the Gap between 2D and 3D Skeleton-Based Action Recognition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00107709" target="_blank" >RIV/00216224:14330/19:00107709 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/ISM46123.2019.00041" target="_blank" >http://dx.doi.org/10.1109/ISM46123.2019.00041</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ISM46123.2019.00041" target="_blank" >10.1109/ISM46123.2019.00041</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Understanding the Gap between 2D and 3D Skeleton-Based Action Recognition
Popis výsledku v původním jazyce
Large volumes of RGB video data are recorded and processed every day. One of the embedded data modality within these videos is the information about human motions. Up to now, this information has been almost unfeasible to extract, and thus human-motion understanding research has been mainly limited to 3D skeleton data captured by dedicated hardware only. However, with recent advances in computer vision, it is possible to estimate 2D skeleton sequences from ordinary videos quite accurately. Such 2D skeleton data possess an excellent potential for future motion understanding applications. In this paper, we adopt a state-of-the-art bidirectional LSTM network to analyze the accuracy gap in the expressive power of 2D and 3D skeleton data recorded simultaneously on a high number of 20k human actions. We further examine how the missing depth information and fluctuations in 2D skeleton sizes influence the recognition rate. We also demonstrate the suitability of 2D skeleton data for general daily activity recognition by reporting baselines on the PKU-MMD dataset.
Název v anglickém jazyce
Understanding the Gap between 2D and 3D Skeleton-Based Action Recognition
Popis výsledku anglicky
Large volumes of RGB video data are recorded and processed every day. One of the embedded data modality within these videos is the information about human motions. Up to now, this information has been almost unfeasible to extract, and thus human-motion understanding research has been mainly limited to 3D skeleton data captured by dedicated hardware only. However, with recent advances in computer vision, it is possible to estimate 2D skeleton sequences from ordinary videos quite accurately. Such 2D skeleton data possess an excellent potential for future motion understanding applications. In this paper, we adopt a state-of-the-art bidirectional LSTM network to analyze the accuracy gap in the expressive power of 2D and 3D skeleton data recorded simultaneously on a high number of 20k human actions. We further examine how the missing depth information and fluctuations in 2D skeleton sizes influence the recognition rate. We also demonstrate the suitability of 2D skeleton data for general daily activity recognition by reporting baselines on the PKU-MMD dataset.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-02033S" target="_blank" >GA19-02033S: Vyhledávání, analytika a anotace datových toků lidských pohybů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
21st IEEE International Symposium on Multimedia (ISM)
ISBN
9781728156064
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
192-195
Název nakladatele
IEEE Computer Society
Místo vydání
Neuveden
Místo konání akce
San Diego, California, USA
Datum konání akce
1. 1. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000528909200030