Divisibility of qubit channels and dynamical maps
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00107862" target="_blank" >RIV/00216224:14330/19:00107862 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.22331/q-2019-05-20-144" target="_blank" >http://dx.doi.org/10.22331/q-2019-05-20-144</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.22331/q-2019-05-20-144" target="_blank" >10.22331/q-2019-05-20-144</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Divisibility of qubit channels and dynamical maps
Popis výsledku v původním jazyce
The concept of divisibility of dynamical maps is used to introduce an analogous concept for quantum channels by analyzing the simulability of channels by means of dynamical maps. In particular, this is addressed for Lindblad divisible, completely positive divisible and positive divisible dynamical maps. The corresponding L-divisible, CP-divisible and P-divisible subsets of channels are characterized (exploiting the results by Wolf et al. [25]) and visualized for the case of qubit channels. We discuss the general inclusions among divisibility sets and show several equivalences for qubit channels. To this end we study the conditions of L-divisibility for finite dimensional channels, especially the cases with negative eigen-values, extending and completing the results of Ref. [26]. Furthermore we show that transitions between every two of the defined divisibility sets are allowed. We explore particular examples of dynamical maps to compare these concepts. Finally, we show that every divisible but not infinitesimal divisible qubit channel (in positive maps) is entanglement-breaking, and open the question if something similar occurs for higher dimensions.
Název v anglickém jazyce
Divisibility of qubit channels and dynamical maps
Popis výsledku anglicky
The concept of divisibility of dynamical maps is used to introduce an analogous concept for quantum channels by analyzing the simulability of channels by means of dynamical maps. In particular, this is addressed for Lindblad divisible, completely positive divisible and positive divisible dynamical maps. The corresponding L-divisible, CP-divisible and P-divisible subsets of channels are characterized (exploiting the results by Wolf et al. [25]) and visualized for the case of qubit channels. We discuss the general inclusions among divisibility sets and show several equivalences for qubit channels. To this end we study the conditions of L-divisibility for finite dimensional channels, especially the cases with negative eigen-values, extending and completing the results of Ref. [26]. Furthermore we show that transitions between every two of the defined divisibility sets are allowed. We explore particular examples of dynamical maps to compare these concepts. Finally, we show that every divisible but not infinitesimal divisible qubit channel (in positive maps) is entanglement-breaking, and open the question if something similar occurs for higher dimensions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-22211S" target="_blank" >GA16-22211S: Rényiho entropie v kvantovém zpracování informace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
QUANTUM
ISSN
2521-327X
e-ISSN
—
Svazek periodika
3
Číslo periodika v rámci svazku
n.a.
Stát vydavatele periodika
AT - Rakouská republika
Počet stran výsledku
14
Strana od-do
144
Kód UT WoS článku
000468479300003
EID výsledku v databázi Scopus
2-s2.0-85076342071