Mean-Payoff Optimization in Continuous-Time Markov Chains with Parametric Alarms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00107916" target="_blank" >RIV/00216224:14330/19:00107916 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1145/3310225" target="_blank" >http://dx.doi.org/10.1145/3310225</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3310225" target="_blank" >10.1145/3310225</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mean-Payoff Optimization in Continuous-Time Markov Chains with Parametric Alarms
Popis výsledku v původním jazyce
Continuous-time Markov chains with alarms (ACTMCs) allow for alarm events that can be non-exponentially distributed. Within parametric ACTMCs, the parameters of alarm-event distributions are not given explicitly and can be the subject of parameter synthesis. In this line, an algorithm is presented that solves the epsilon-optimal parameter synthesis problem for parametric ACTMCs with long-run average optimization objectives. The approach provided in this article is based on a reduction of the problem to finding long-run average optimal policies in semi-Markov decision processes (semi-MDPs) and sufficient discretization of the parameter (i.e., action) space. Since the set of actions in the discretized semi-MDP can be very large, a straightforward approach based on an explicit action-space construction fails to solve even simple instances of the problem. The presented algorithm uses an enhanced policy iteration on symbolic representations of the action space. Soundness of the algorithm is established for parametric ACTMCs with alarm-event distributions that satisfy four mild assumptions, fulfilled by many kinds of distributions. Exemplifying proofs for the satisfaction of these requirements are provided for Dirac, uniform, exponential, Erlang, and Weibull distributions in particular. An experimental implementation shows that the symbolic technique substantially improves the efficiency of the synthesis algorithm and allows us to solve instances of realistic size.
Název v anglickém jazyce
Mean-Payoff Optimization in Continuous-Time Markov Chains with Parametric Alarms
Popis výsledku anglicky
Continuous-time Markov chains with alarms (ACTMCs) allow for alarm events that can be non-exponentially distributed. Within parametric ACTMCs, the parameters of alarm-event distributions are not given explicitly and can be the subject of parameter synthesis. In this line, an algorithm is presented that solves the epsilon-optimal parameter synthesis problem for parametric ACTMCs with long-run average optimization objectives. The approach provided in this article is based on a reduction of the problem to finding long-run average optimal policies in semi-Markov decision processes (semi-MDPs) and sufficient discretization of the parameter (i.e., action) space. Since the set of actions in the discretized semi-MDP can be very large, a straightforward approach based on an explicit action-space construction fails to solve even simple instances of the problem. The presented algorithm uses an enhanced policy iteration on symbolic representations of the action space. Soundness of the algorithm is established for parametric ACTMCs with alarm-event distributions that satisfy four mild assumptions, fulfilled by many kinds of distributions. Exemplifying proofs for the satisfaction of these requirements are provided for Dirac, uniform, exponential, Erlang, and Weibull distributions in particular. An experimental implementation shows that the symbolic technique substantially improves the efficiency of the synthesis algorithm and allows us to solve instances of realistic size.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-11193S" target="_blank" >GA18-11193S: Algoritmy pro diskrétní systémy a hry s nekonečně mnoha stavy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACM Transactions on Modeling and Computer Simulation (TOMACS)
ISSN
1049-3301
e-ISSN
1558-1195
Svazek periodika
29
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
„28:1“-„28:26“
Kód UT WoS článku
000510187600010
EID výsledku v databázi Scopus
2-s2.0-85075548712