Strategy Representation by Decision Trees with Linear Classifiers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00108295" target="_blank" >RIV/00216224:14330/19:00108295 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-30281-8_7" target="_blank" >http://dx.doi.org/10.1007/978-3-030-30281-8_7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-30281-8_7" target="_blank" >10.1007/978-3-030-30281-8_7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Strategy Representation by Decision Trees with Linear Classifiers
Popis výsledku v původním jazyce
Graph games and Markov decision processes (MDPs) are standard models in reactive synthesis and verification of probabilistic systems with nondeterminism. The class of omega-regular winning conditions; e.g., safety, reachability, liveness, parity conditions; provides a robust and expressive specification formalism for properties that arise in analysis of reactive systems. The resolutions of nondeterminism in games and MDPs are represented as strategies, and we consider succinct representation of such strategies. The decision-tree data structure from machine learning retains the flavor of decisions of strategies and allows entropy-based minimization to obtain succinct trees. However, in contrast to traditional machine-learning problems where small errors are allowed, for winning strategies in graph games and MDPs no error is allowed, and the decision tree must represent the entire strategy. In this work we propose decision trees with linear classifiers for representation of strategies in graph games and MDPs. We have implemented strategy representation using this data structure and we present experimental results for problems on graph games and MDPs, which show that this new data structure presents a much more efficient strategy representation as compared to standard decision trees.
Název v anglickém jazyce
Strategy Representation by Decision Trees with Linear Classifiers
Popis výsledku anglicky
Graph games and Markov decision processes (MDPs) are standard models in reactive synthesis and verification of probabilistic systems with nondeterminism. The class of omega-regular winning conditions; e.g., safety, reachability, liveness, parity conditions; provides a robust and expressive specification formalism for properties that arise in analysis of reactive systems. The resolutions of nondeterminism in games and MDPs are represented as strategies, and we consider succinct representation of such strategies. The decision-tree data structure from machine learning retains the flavor of decisions of strategies and allows entropy-based minimization to obtain succinct trees. However, in contrast to traditional machine-learning problems where small errors are allowed, for winning strategies in graph games and MDPs no error is allowed, and the decision tree must represent the entire strategy. In this work we propose decision trees with linear classifiers for representation of strategies in graph games and MDPs. We have implemented strategy representation using this data structure and we present experimental results for problems on graph games and MDPs, which show that this new data structure presents a much more efficient strategy representation as compared to standard decision trees.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-11193S" target="_blank" >GA18-11193S: Algoritmy pro diskrétní systémy a hry s nekonečně mnoha stavy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Quantitative Evaluation of Systems (QEST 2019)
ISBN
9783030302801
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
20
Strana od-do
109-128
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Cham
Datum konání akce
1. 1. 2019
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
000679281300007