Analysis of Data Warehouse Architectures: Modeling and Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00109110" target="_blank" >RIV/00216224:14330/19:00109110 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.5220/0007728006040611" target="_blank" >http://dx.doi.org/10.5220/0007728006040611</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0007728006040611" target="_blank" >10.5220/0007728006040611</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of Data Warehouse Architectures: Modeling and Classification
Popis výsledku v původním jazyce
With decades of development and innovation, data warehouses and their architectures have been extended to a variety of derivatives in various environments to achieve different organisations’ requirements. Although there are some ad-hoc studies on data warehouse architecture (DWHA) investigations and classifications, limited research is relevant to systematically model and classify DWHAs. Especially in the big data era, data is generated explosively. More emerging architectures and technologies are leveraged to manipulate and manage big data in this domain. It is therefore valuable to revisit and investigate DWHAs with new innovations. In this paper, we collect 116 publications and model 73 disparate DWHAs using Archimate, then 9 representative DWHAs are identified and summarised into a”big picture”. Furthermore, it proposes a new classification model sticking to state-of-the-art DWHAs. This model can guide researchers and practitioners to identify, analyse and compare differences and trends of DWHAs from componental and architectural perspectives.
Název v anglickém jazyce
Analysis of Data Warehouse Architectures: Modeling and Classification
Popis výsledku anglicky
With decades of development and innovation, data warehouses and their architectures have been extended to a variety of derivatives in various environments to achieve different organisations’ requirements. Although there are some ad-hoc studies on data warehouse architecture (DWHA) investigations and classifications, limited research is relevant to systematically model and classify DWHAs. Especially in the big data era, data is generated explosively. More emerging architectures and technologies are leveraged to manipulate and manage big data in this domain. It is therefore valuable to revisit and investigate DWHAs with new innovations. In this paper, we collect 116 publications and model 73 disparate DWHAs using Archimate, then 9 representative DWHAs are identified and summarised into a”big picture”. Furthermore, it proposes a new classification model sticking to state-of-the-art DWHAs. This model can guide researchers and practitioners to identify, analyse and compare differences and trends of DWHAs from componental and architectural perspectives.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 21st International Conference on Enterprise Information Systems
ISBN
9789897583728
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
604-611
Název nakladatele
SciTePress
Místo vydání
Crete, Greece
Místo konání akce
Crete, Greece
Datum konání akce
1. 1. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000570422800062