Semantically Coherent Vector Space Representations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00109517" target="_blank" >RIV/00216224:14330/19:00109517 - isvavai.cz</a>
Výsledek na webu
<a href="https://mir.fi.muni.cz/posters/mlprague-2019-semantic_representations.pdf" target="_blank" >https://mir.fi.muni.cz/posters/mlprague-2019-semantic_representations.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semantically Coherent Vector Space Representations
Popis výsledku v původním jazyce
<p>Our work is a scientific poster that was presented at the ML Prague 2019 conference during February 22–24, 2019.</p> <p>Content is king (<a href="http://web.archive.org/web/20010126005200/http://www.microsoft.com/billgates/columns/1996essay/essay960103.asp">Gates, 1996</a>). Decomposition of word semantics matters (<a href="https://arxiv.org/abs/1301.3781">Mikolov, 2013</a>). Decomposition of a sentence, paragraph, and document semantics into semantically coherent vector space representations matters, too. Interpretability of these learned vector spaces is the holy grail of natural language processing today, as it would allow accurate representation of thoughts and plugging-in inference into the game.</p> <p>We will show recent results of our attempts towards this goal by showing how decomposition of document semantics could improve the query answering, performance, and “horizontal transfer learning” based on word2bits could be achieved.</p> <p>Word representation in the form of binary features allows to use word lattice representation for feature inference by the well studied formal concept analysis theory, and for precise semantic similarity metric based on discriminative features. Also, the incremental learning of word features allows to interpret and infer on them, targeting the holy grail.</p>
Název v anglickém jazyce
Semantically Coherent Vector Space Representations
Popis výsledku anglicky
<p>Our work is a scientific poster that was presented at the ML Prague 2019 conference during February 22–24, 2019.</p> <p>Content is king (<a href="http://web.archive.org/web/20010126005200/http://www.microsoft.com/billgates/columns/1996essay/essay960103.asp">Gates, 1996</a>). Decomposition of word semantics matters (<a href="https://arxiv.org/abs/1301.3781">Mikolov, 2013</a>). Decomposition of a sentence, paragraph, and document semantics into semantically coherent vector space representations matters, too. Interpretability of these learned vector spaces is the holy grail of natural language processing today, as it would allow accurate representation of thoughts and plugging-in inference into the game.</p> <p>We will show recent results of our attempts towards this goal by showing how decomposition of document semantics could improve the query answering, performance, and “horizontal transfer learning” based on word2bits could be achieved.</p> <p>Word representation in the form of binary features allows to use word lattice representation for feature inference by the well studied formal concept analysis theory, and for precise semantic similarity metric based on discriminative features. Also, the incremental learning of word features allows to interpret and infer on them, targeting the holy grail.</p>
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů