Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

When Lagged Fibonacci Generators jump

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00110516" target="_blank" >RIV/00216224:14330/19:00110516 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.dam.2019.06.022" target="_blank" >http://dx.doi.org/10.1016/j.dam.2019.06.022</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.dam.2019.06.022" target="_blank" >10.1016/j.dam.2019.06.022</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    When Lagged Fibonacci Generators jump

  • Popis výsledku v původním jazyce

    Jansen introduced a primitive called jumped Linear Feedback Shift Register (LFSR) for building LFSRs that can be clocked a large number of times with a single simple operation. This is useful in the construction of stream ciphers based on clock-controlled LFSRs. A concept of Lagged Fibonacci Generator (LFG) is also used as an important building block of key-stream generators in stream cipher cryptography. In this paper, we use the jumping concept of Jansen in case of LFG. We show that unlike LFSRs, LFGs need not jump always in the state space itself, even though the characteristic polynomial is primitive. Instead, it may have a hyper space jump depending on the characteristic primitive polynomial. We give a necessary and sufficient condition for an LFG to jump within the state space itself and when it exists, it is same as the degree of the characteristic polynomial.

  • Název v anglickém jazyce

    When Lagged Fibonacci Generators jump

  • Popis výsledku anglicky

    Jansen introduced a primitive called jumped Linear Feedback Shift Register (LFSR) for building LFSRs that can be clocked a large number of times with a single simple operation. This is useful in the construction of stream ciphers based on clock-controlled LFSRs. A concept of Lagged Fibonacci Generator (LFG) is also used as an important building block of key-stream generators in stream cipher cryptography. In this paper, we use the jumping concept of Jansen in case of LFG. We show that unlike LFSRs, LFGs need not jump always in the state space itself, even though the characteristic polynomial is primitive. Instead, it may have a hyper space jump depending on the characteristic primitive polynomial. We give a necessary and sufficient condition for an LFG to jump within the state space itself and when it exists, it is same as the degree of the characteristic polynomial.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Discrete Applied Mathematics

  • ISSN

    0166-218X

  • e-ISSN

  • Svazek periodika

    267

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    9

  • Strana od-do

    64-72

  • Kód UT WoS článku

    000485852500006

  • EID výsledku v databázi Scopus

    2-s2.0-85068521159