The Power of Cut-Based Parameters for Computing Edge Disjoint Paths
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00113728" target="_blank" >RIV/00216224:14330/19:00113728 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/book/10.1007/978-3-030-30786-8#about" target="_blank" >https://link.springer.com/book/10.1007/978-3-030-30786-8#about</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-30786-8_15" target="_blank" >10.1007/978-3-030-30786-8_15</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Power of Cut-Based Parameters for Computing Edge Disjoint Paths
Popis výsledku v původním jazyce
This paper revisits the classical Edge Disjoint Paths (EDP) problem, where one is given an undirected graph G and a set of terminal pairs P and asks whether G contains a set of pairwise edge-disjoint paths connecting every terminal pair in P. Our aim is to identify structural properties (parameters) of graphs which allow the efficient solution of EDP without restricting the placement of terminals in P in any way. In this setting, EDP is known to remain NP-hard even on extremely restricted graph classes, such as graphs with a vertex cover of size 3. We present three results which use edge-separator based parameters to chart new islands of tractability in the complexity landscape of EDP. Our first and main result utilizes the fairly recent structural parameter treecut width (a parameter with fundamental ties to graph immersions and graph cuts): we obtain a polynomial-time algorithm for EDP on every graph class of bounded treecut width. Our second result shows that EDP parameterized by treecut width is unlikely to be fixed-parameter tractable. Our final, third result is a polynomial kernel for EDP parameterized by the size of a minimum feedback edge set in the graph.
Název v anglickém jazyce
The Power of Cut-Based Parameters for Computing Edge Disjoint Paths
Popis výsledku anglicky
This paper revisits the classical Edge Disjoint Paths (EDP) problem, where one is given an undirected graph G and a set of terminal pairs P and asks whether G contains a set of pairwise edge-disjoint paths connecting every terminal pair in P. Our aim is to identify structural properties (parameters) of graphs which allow the efficient solution of EDP without restricting the placement of terminals in P in any way. In this setting, EDP is known to remain NP-hard even on extremely restricted graph classes, such as graphs with a vertex cover of size 3. We present three results which use edge-separator based parameters to chart new islands of tractability in the complexity landscape of EDP. Our first and main result utilizes the fairly recent structural parameter treecut width (a parameter with fundamental ties to graph immersions and graph cuts): we obtain a polynomial-time algorithm for EDP on every graph class of bounded treecut width. Our second result shows that EDP parameterized by treecut width is unlikely to be fixed-parameter tractable. Our final, third result is a polynomial kernel for EDP parameterized by the size of a minimum feedback edge set in the graph.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
WG 2019: Graph-Theoretic Concepts in Computer Science
ISBN
9783030307851
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
15
Strana od-do
190-204
Název nakladatele
Springer
Místo vydání
USA
Místo konání akce
Spanelsko
Datum konání akce
1. 1. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000557920500015