Entangling and disentangling in Grover's search algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00113867" target="_blank" >RIV/00216224:14330/19:00113867 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.tcs.2018.10.001" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2018.10.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2018.10.001" target="_blank" >10.1016/j.tcs.2018.10.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Entangling and disentangling in Grover's search algorithm
Popis výsledku v původním jazyce
Entanglement is believed to be crucial in making quantum algorithms more powerful than their classical counterparts for certain computational tasks. In Grover's search algorithm, the Grover's operator iteration G can be decomposed into two basic operators, i.e., G = RO, where O is so called the Oracle operator and R is the Reflection operator. To probe the production/depletion of entanglement from basic operator level, we investigate the roles the Oracle and the Reflection operators play in the entanglement dynamics during Grover's search algorithm application. Using geometric measure of entanglement (GME), we show that the Oracle operator is an entangling operator which almost always produces (increases) entanglement while the Reflection operator is a disentangling operator which mainly depletes (decreases) entanglement. We explicitly demonstrate that there exists a turning point during the Grover's iteration application with the following properties. Before that turning point, the entanglement is almost always increased when the Oracle operator is applied, and the effect of the Reflection operator on the level of entanglement can be almost ignored. However, after the turning point, both the Oracle and the Reflection operators play important roles to the entanglement, more exactly, the Reflection operator significantly decreases entanglement while the Oracle operator increases entanglement. All these results are carefully demonstrated.
Název v anglickém jazyce
Entangling and disentangling in Grover's search algorithm
Popis výsledku anglicky
Entanglement is believed to be crucial in making quantum algorithms more powerful than their classical counterparts for certain computational tasks. In Grover's search algorithm, the Grover's operator iteration G can be decomposed into two basic operators, i.e., G = RO, where O is so called the Oracle operator and R is the Reflection operator. To probe the production/depletion of entanglement from basic operator level, we investigate the roles the Oracle and the Reflection operators play in the entanglement dynamics during Grover's search algorithm application. Using geometric measure of entanglement (GME), we show that the Oracle operator is an entangling operator which almost always produces (increases) entanglement while the Reflection operator is a disentangling operator which mainly depletes (decreases) entanglement. We explicitly demonstrate that there exists a turning point during the Grover's iteration application with the following properties. Before that turning point, the entanglement is almost always increased when the Oracle operator is applied, and the effect of the Reflection operator on the level of entanglement can be almost ignored. However, after the turning point, both the Oracle and the Reflection operators play important roles to the entanglement, more exactly, the Reflection operator significantly decreases entanglement while the Oracle operator increases entanglement. All these results are carefully demonstrated.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Svazek periodika
773
Číslo periodika v rámci svazku
14 June 2019
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
15
Strana od-do
138-152
Kód UT WoS článku
000469907500009
EID výsledku v databázi Scopus
2-s2.0-85055153956