Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Permutations with fixed pattern densities

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F20%3A00115548" target="_blank" >RIV/00216224:14330/20:00115548 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1002/rsa.20882" target="_blank" >http://dx.doi.org/10.1002/rsa.20882</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/rsa.20882" target="_blank" >10.1002/rsa.20882</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Permutations with fixed pattern densities

  • Popis výsledku v původním jazyce

    We study scaling limits of random permutations ("permutons") constrained by having fixed densities of a finite number of patterns. We show that the limit shapes are determined by maximizing entropy over permutons with those constraints. In particular, we compute (exactly or numerically) the limit shapes with fixed 12 density, with fixed 12 and 123 densities, with fixed 12 density and the sum of 123 and 213 densities, and with fixed 123 and 321 densities. In the last case we explore a particular phase transition. To obtain our results, we also provide a description of permutons using a dynamic construction.

  • Název v anglickém jazyce

    Permutations with fixed pattern densities

  • Popis výsledku anglicky

    We study scaling limits of random permutations ("permutons") constrained by having fixed densities of a finite number of patterns. We show that the limit shapes are determined by maximizing entropy over permutons with those constraints. In particular, we compute (exactly or numerically) the limit shapes with fixed 12 density, with fixed 12 and 123 densities, with fixed 12 density and the sum of 123 and 213 densities, and with fixed 123 and 321 densities. In the last case we explore a particular phase transition. To obtain our results, we also provide a description of permutons using a dynamic construction.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Random Structures and Algorithms

  • ISSN

    1042-9832

  • e-ISSN

  • Svazek periodika

    56

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    31

  • Strana od-do

    220-250

  • Kód UT WoS článku

    000479724400001

  • EID výsledku v databázi Scopus

    2-s2.0-85071782068