Rotation Based MSS/MCS Enumeration
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F20%3A00115569" target="_blank" >RIV/00216224:14330/20:00115569 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.29007/8btb" target="_blank" >http://dx.doi.org/10.29007/8btb</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.29007/8btb" target="_blank" >10.29007/8btb</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rotation Based MSS/MCS Enumeration
Popis výsledku v původním jazyce
Given an unsatisfiable Boolean Formula F in CNF, i.e., a set of clauses, one is often interested in identifying Maximal Satisfiable Subsets (MSSes) of F or, equivalently, the complements of MSSes called Minimal Correction Subsets (MCSes). Since MSSes (MCSes) find applications in many domains, e.g. diagnosis, ontologies debugging, or axiom pinpointing, several MSS enumeration algorithms have been proposed. Unfortunately, finding even a single MSS is often very hard since it naturally subsumes repeatedly solving the satisfiability problem. Moreover, there can be up to exponentially many MSSes, thus their complete enumeration is often practically intractable. Therefore, the algorithms tend to identify as many MSSes as possible within a given time limit. In this work, we present a novel MSS enumeration algorithm called RIME. Compared to existing algorithms, RIME is much more frugal in the number of performed satisfiability checks which we witness via an experimental comparison. Moreover, RIME is several times faster than existing tools.
Název v anglickém jazyce
Rotation Based MSS/MCS Enumeration
Popis výsledku anglicky
Given an unsatisfiable Boolean Formula F in CNF, i.e., a set of clauses, one is often interested in identifying Maximal Satisfiable Subsets (MSSes) of F or, equivalently, the complements of MSSes called Minimal Correction Subsets (MCSes). Since MSSes (MCSes) find applications in many domains, e.g. diagnosis, ontologies debugging, or axiom pinpointing, several MSS enumeration algorithms have been proposed. Unfortunately, finding even a single MSS is often very hard since it naturally subsumes repeatedly solving the satisfiability problem. Moreover, there can be up to exponentially many MSSes, thus their complete enumeration is often practically intractable. Therefore, the algorithms tend to identify as many MSSes as possible within a given time limit. In this work, we present a novel MSS enumeration algorithm called RIME. Compared to existing algorithms, RIME is much more frugal in the number of performed satisfiability checks which we witness via an experimental comparison. Moreover, RIME is several times faster than existing tools.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
LPAR 2020: 23rd International Conference on Logic for Programming, Artificial Intelligence and Reasoning
ISBN
—
ISSN
2398-7340
e-ISSN
—
Počet stran výsledku
18
Strana od-do
120-137
Název nakladatele
EPiC Series in Computing
Místo vydání
Neuveden
Místo konání akce
Online
Datum konání akce
1. 1. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—