On the Application of Convex Transforms to Metric Search
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F20%3A00116150" target="_blank" >RIV/00216224:14330/20:00116150 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0167865520303068" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0167865520303068</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.patrec.2020.08.008" target="_blank" >10.1016/j.patrec.2020.08.008</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Application of Convex Transforms to Metric Search
Popis výsledku v původním jazyce
Scalable similarity search in metric spaces relies on using the mathematical properties of the space in order to allow efficient querying. Most important in this context is the triangle inequality property, which can allow the majority of individual similarity comparisons to be avoided for a given query. However many important metric spaces, typically those with high dimensionality, are not amenable to such techniques. In the past convex transforms have been studied as a pragmatic mechanism which can overcome this effect; however the problem with this approach is that the metric properties may be lost, leading to loss of accuracy. Here, we study the underlying properties of such transforms and their effect on metric indexing mechanisms. We show there are some spaces where certain transforms may be applied without loss of accuracy, and further spaces where we can understand the engineering tradeoffs between accuracy and efficiency. We back these observations with experimental analysis. To highlight the value of the approach, we show three large spaces deriving from practical domains whose dimensionality prevents normal indexing techniques, but where the transforms applied give scalable access with a relatively small loss of accuracy.
Název v anglickém jazyce
On the Application of Convex Transforms to Metric Search
Popis výsledku anglicky
Scalable similarity search in metric spaces relies on using the mathematical properties of the space in order to allow efficient querying. Most important in this context is the triangle inequality property, which can allow the majority of individual similarity comparisons to be avoided for a given query. However many important metric spaces, typically those with high dimensionality, are not amenable to such techniques. In the past convex transforms have been studied as a pragmatic mechanism which can overcome this effect; however the problem with this approach is that the metric properties may be lost, leading to loss of accuracy. Here, we study the underlying properties of such transforms and their effect on metric indexing mechanisms. We show there are some spaces where certain transforms may be applied without loss of accuracy, and further spaces where we can understand the engineering tradeoffs between accuracy and efficiency. We back these observations with experimental analysis. To highlight the value of the approach, we show three large spaces deriving from practical domains whose dimensionality prevents normal indexing techniques, but where the transforms applied give scalable access with a relatively small loss of accuracy.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Pattern Recognition Letters
ISSN
0167-8655
e-ISSN
—
Svazek periodika
138
Číslo periodika v rámci svazku
October 2020
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
563-570
Kód UT WoS článku
000579804900076
EID výsledku v databázi Scopus
2-s2.0-85090410278