On Lexicographic Proof Rules for Probabilistic Termination
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00119268" target="_blank" >RIV/00216224:14330/21:00119268 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-90870-6_33" target="_blank" >http://dx.doi.org/10.1007/978-3-030-90870-6_33</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-90870-6_33" target="_blank" >10.1007/978-3-030-90870-6_33</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Lexicographic Proof Rules for Probabilistic Termination
Popis výsledku v původním jazyce
We consider the almost-sure (a.s.) termination problem for probabilistic programs, which are a stochastic extension of classical imperative programs. Lexicographic ranking functions provide a sound and practical approach for termination of non-probabilistic programs, and their extension to probabilistic programs is achieved via lexicographic ranking supermartingales (LexRSMs). However, LexRSMs introduced in the previous work have a limitation that impedes their automation: all of their components have to be non-negative in all reachable states. This might result in LexRSM not existing even for simple terminating programs. Our contributions are twofold: First, we introduce a generalization of LexRSMs which allows for some components to be negative. This standard feature of non-probabilistic termination proofs was hitherto not known to be sound in the probabilistic setting, as the soundness proof requires a careful analysis of the underlying stochastic process. Second, we present polynomial-time algorithms using our generalized LexRSMs for proving a.s. termination in broad classes of linear-arithmetic programs.
Název v anglickém jazyce
On Lexicographic Proof Rules for Probabilistic Termination
Popis výsledku anglicky
We consider the almost-sure (a.s.) termination problem for probabilistic programs, which are a stochastic extension of classical imperative programs. Lexicographic ranking functions provide a sound and practical approach for termination of non-probabilistic programs, and their extension to probabilistic programs is achieved via lexicographic ranking supermartingales (LexRSMs). However, LexRSMs introduced in the previous work have a limitation that impedes their automation: all of their components have to be non-negative in all reachable states. This might result in LexRSM not existing even for simple terminating programs. Our contributions are twofold: First, we introduce a generalization of LexRSMs which allows for some components to be negative. This standard feature of non-probabilistic termination proofs was hitherto not known to be sound in the probabilistic setting, as the soundness proof requires a careful analysis of the underlying stochastic process. Second, we present polynomial-time algorithms using our generalized LexRSMs for proving a.s. termination in broad classes of linear-arithmetic programs.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-15134Y" target="_blank" >GJ19-15134Y: Verifikace a analýza pravděpodobnostních programů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
24th International Symposium on Formal Methods, FM 2021
ISBN
9783030908690
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
21
Strana od-do
619-639
Název nakladatele
Springer
Místo vydání
Cham, Switzerland
Místo konání akce
online
Datum konání akce
1. 1. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000758218600033