Recommendation Recovery with Adaptive Filter for Recommender Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00122770" target="_blank" >RIV/00216224:14330/21:00122770 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.5220/0010653600003058" target="_blank" >http://dx.doi.org/10.5220/0010653600003058</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0010653600003058" target="_blank" >10.5220/0010653600003058</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Recommendation Recovery with Adaptive Filter for Recommender Systems
Popis výsledku v původním jazyce
Most recommender systems are focused on suggesting the optimal recommendations rather than finding a way to recover from a failed recommendation. Thus, when a failed recommendation appears several times, users may abandon to use a recommender system by considering that the system does not take her preference into account. One of the reasons is that when a user does not like a recommendation, this preference cannot be instantly captured by the recommender learning model, since the learning model cannot be constantly updated. Although this can be to some extent alleviated by critique-based algorithms, fine tuning the preference is not capable of fully expelling not-preferred items. This paper is therefore to propose a recommender recovery solution with an adaptive filter to deal with the failed recommendations while keeping the user engagement and, in turn, allow the recommender system to become a long-term application. It can also avoid the cost of constantly updating the recommender learning model.
Název v anglickém jazyce
Recommendation Recovery with Adaptive Filter for Recommender Systems
Popis výsledku anglicky
Most recommender systems are focused on suggesting the optimal recommendations rather than finding a way to recover from a failed recommendation. Thus, when a failed recommendation appears several times, users may abandon to use a recommender system by considering that the system does not take her preference into account. One of the reasons is that when a user does not like a recommendation, this preference cannot be instantly captured by the recommender learning model, since the learning model cannot be constantly updated. Although this can be to some extent alleviated by critique-based algorithms, fine tuning the preference is not capable of fully expelling not-preferred items. This paper is therefore to propose a recommender recovery solution with an adaptive filter to deal with the failed recommendations while keeping the user engagement and, in turn, allow the recommender system to become a long-term application. It can also avoid the cost of constantly updating the recommender learning model.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 17th International Conference on Web Information Systems and Technologies - WEBIST
ISBN
9789897585364
ISSN
2184-3252
e-ISSN
—
Počet stran výsledku
8
Strana od-do
283-290
Název nakladatele
SciTePress/INSTICC
Místo vydání
Setúbal, Portugal
Místo konání akce
Setúbal, Portugal
Datum konání akce
1. 1. 2021
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
000795868100028