An Innovative Perspective on Metabolomics Data Analysis in Biomedical Research Using Concept Drift Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00126185" target="_blank" >RIV/00216224:14330/21:00126185 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26220/21:PU142331
Výsledek na webu
<a href="http://dx.doi.org/10.1109/BIBM52615.2021.9669418" target="_blank" >http://dx.doi.org/10.1109/BIBM52615.2021.9669418</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/BIBM52615.2021.9669418" target="_blank" >10.1109/BIBM52615.2021.9669418</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Innovative Perspective on Metabolomics Data Analysis in Biomedical Research Using Concept Drift Detection
Popis výsledku v původním jazyce
The most challenging applications of data analysis prediction are mostly related to scenarios, where the source data is being provided in a time course. As the distribution of the underlying reality shifts over a time, a classification model trained on the previously relevant data starts to yield incorrect predictions about the data that are relevant right now. This phenomenon in machine learning is called concept drift. Within biomedical data, one of the molecular networks that is most significantly changing over a time, is the metabolome. Using metabolomics analysis to biomedical applications, makes an ideal tool for preventive healthcare, pharmaceutical industry, and even ecology engineering. This study provides an innovated perspective on the analysis of metabolomics datasets using the concept of drift detection. The evaluation is based on two main goals. The first goal is connected to the concept drift detection in available metabolomics datasets and the second goal is to provide the assessment of commonly used tools, resulting in the best detection approach for a general metabolomics dataset.
Název v anglickém jazyce
An Innovative Perspective on Metabolomics Data Analysis in Biomedical Research Using Concept Drift Detection
Popis výsledku anglicky
The most challenging applications of data analysis prediction are mostly related to scenarios, where the source data is being provided in a time course. As the distribution of the underlying reality shifts over a time, a classification model trained on the previously relevant data starts to yield incorrect predictions about the data that are relevant right now. This phenomenon in machine learning is called concept drift. Within biomedical data, one of the molecular networks that is most significantly changing over a time, is the metabolome. Using metabolomics analysis to biomedical applications, makes an ideal tool for preventive healthcare, pharmaceutical industry, and even ecology engineering. This study provides an innovated perspective on the analysis of metabolomics datasets using the concept of drift detection. The evaluation is based on two main goals. The first goal is connected to the concept drift detection in available metabolomics datasets and the second goal is to provide the assessment of commonly used tools, resulting in the best detection approach for a general metabolomics dataset.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10602 - Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of BIBM 2021
ISBN
9781665401265
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
3075-3082
Název nakladatele
IEEE
Místo vydání
Houston, TX, USA
Místo konání akce
Houston, TX, USA
Datum konání akce
1. 1. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—